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Abstract
We review several results related to the problem of a quantum particle in a
random environment. In an introductory part, we recall how several functionals
of Brownian motion arise in the study of electronic transport in weakly
disordered metals (weak localization). Two aspects of the physics of the one-
dimensional strong localization are reviewed: some properties of the scattering
by a random potential (time delay distribution) and a study of the spectrum
of a random potential on a bounded domain (the extreme value statistics of
the eigenvalues). Then we mention several results concerning the diffusion on
graphs, and more generally the spectral properties of the Schrödinger operator
on graphs. The interest of spectral determinants as generating functions
characterizing the diffusion on graphs is illustrated. Finally, we consider a
two-dimensional model of a charged particle coupled to the random magnetic
field due to magnetic vortices. We recall the connection between spectral
properties of this model and winding functionals of planar Brownian motion.

PACS numbers: 72.15.Rn, 73.20.Fz, 02.50.−r, 05.40.Jc, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Weak and strong localization

At low temperature, the electric conductivity σ of metals and weakly disordered
semiconductors is determined by the scattering of electrons on impurities. It is given by
the Drude formula

σ0 = nee
2τe

m
, (1)

0305-4470/05/370341+43$30.00 © 2005 IOP Publishing Ltd Printed in the UK R341

http://dx.doi.org/10.1088/0305-4470/38/37/R01
http://stacks.iop.org/ja/38/R341


R342 Topical Review

where e and m are the charge and mass of the electron respectively. ne is the electronic density
and τe the elastic scattering time4. This purely classical formula is only valid in a regime where
quantum mechanical effects can be neglected. This is the case if the elastic mean free path
of electrons �e = vF τe is large compared with the De Broglie wavelength λF = 2πh̄/mvF

corresponding to the Fermi energy (vF is the Fermi velocity).

Strong localization. When these two length scales are of the same order �e ≈ λF (strong
disorder), the fact that the electrons are quantum objects must be taken into account and the
wave-like character of these particles is of primary importance. It is indeed this wave character
which is responsible for the localization phenomenon. The multiple scattering on impurities
distributed randomly in space creates random phases between these different waves which can
interfere destructively. These interference effects reduce the electronic conductivity. In the
extreme case of very strong disorder, the waves no longer propagate and the system becomes
insulating. This is the strong localization phenomenon which was conjectured by Anderson
in 1958.

Weak localization. In the 1980s it was realized that even far from the strong localization
regime the quantum transport is affected by the disorder. Diagrammatic techniques, used in
the weak disorder limit λF � �e, were initiated by the works of Al’tshuler, Aronov, Gor’kov,
Khmel’nitzkiı̆, Larkin and Lee [12, 116] (see [13] for an introduction and [4] for a recent
presentation). In this regime, called the weak localization regime, the Drude conductivity gets
a small sample-dependent correction whose average, denoted by 〈�σ 〉, is called the ‘weak
localization correction’. 〈· · ·〉 denotes averaging with respect to the random potential. From
the experimental side, this phenomenon is well established and has been the subject of many
studies (see [34, 16] for review articles).

Phase coherence and dimensional reduction. The localization phenomenon comes from the
interplay between the wave nature of electronic transport and the disorder. This manifestation
of quantum interferences requires that the phase of the electronic wave is well defined; however,
several mechanisms limit the phase coherence of electrons in metals, among which are the
effect of the vibrations of the crystal (electron–phonon interaction) or the electron–electron
interaction. We introduce a length scale Lϕ , the phase coherence length, that characterizes
the length over which phase breaking phenomenon becomes effective. The lack of phase
coherence in real systems is the reason why the strong localization regime has not been
observed in experiments on metals. In dimension d = 3 the strong localization regime is
only expected to occur for sufficiently strong disorder5. However, strong localization can
also be observed in the weak disorder limit (λF � �e) by reducing the dimensionnality6. It
has been shown in the framework of random matrix theory that the localization length of a
weakly disordered quasi-1d wire behaves as λ ∼ Nc�e, where Nc is the number of conducting
channels7 [30, 79, 80, 166]. Therefore the strong localization regime is expected to occur

4 The elastic scattering time τe is the time characterizing the relaxation of the direction of the momentum of the
electron. The conductivity is proportional to τe for isotropic scattering by impurities. For anisotropic scattering
the conductivity involves a different time τtr called the ‘transport’ time [17] (see [4] for a discussion within the
perturbative approach).
5 Following the scaling ideas initiated by Thouless [156] and Wegner [219, 221] it was shown in [1] that the
localization–delocalization transition exists only for dimension d � 3. In d = 1 and d = 2, the fully coherent system
is always strongly localized, whatever the strength of the disorder.
6 The effective dimension of the system is obtained by comparing the sample size with the phase coherence length
Lϕ . For example, a long wire of length L and of transverse dimension W is effectively in a 1d regime if W � Lϕ � L.
7 The localization length predicted by the random matrix theory (RMT) can be found in [30]: λRMT =
[β(Nc − 1) + 2]�e , where β = 1, 2, 4 is the Dyson index describing orthogonal, unitary and symplectic ensembles,
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when coherence is kept at least over a scale λ. At low temperature, in the absence of magnetic
impurity, phase breaking mechanisms are dominated by electron–electron interaction, which
leads to a divergence of the phase coherence length Lϕ(T ) ∝ (Nc/T )1/3 predicted in [9] and
verified in several experiments such as [84, 213, 224] (see [180] for recent measurements down
to 40 mK). Therefore the temperature below which strong localization might be observable is
given by Lϕ(T∗) ∼ λ, which leads to T∗ ∼ 1

/(
N2

c dτe

)
. The crossover temperature in metals

is out of the experimental range, however it becomes reachable in wires etched at the interface
of two semiconducting materials, when the number of conducting channels is highly reduced,
and the manifestation of the strong localization has been observed in [109].

Strictly one-dimensional case. In a weakly disordered and coherent quasi-1d wire, the weak
localization regime only occurs for length scales intermediate between the elastic mean free
path and the localization length �e � L � λ. In the strictly one-dimensional case, since
λ � 4�e for weak disorder8, such a regime does not exist and the system is either ballistic
(�e 	 L) or strongly localized (�e � L).

Anderson localization in one dimension has been studied by mathematicians and
mathematical physicists from the view point of spectral analysis and in connection with
limit theorems for products of random matrices [45]. A breakthrough was the proof of wave
localization in one dimension by Gol’dshtein, Molchanov and Pastur [113]. Although some
progress has been made, the multidimensional case is still out of reach and the subject of
weak localization has almost not been touched in the mathematical literature. One of the
main fields of interest in the last 20 years is the investigation of random Schrödinger operators
in the presence of magnetic fields (see for example the [46, 77, 78, 100, 101, 220]; for
recent results on Lifshitz tails with magnetic field see [101, 153]). From the physics side
significant advances have been realized. Field theoretical methods based on supersymmetry
provide a general framework for disordered systems and also allow establishing some links
with quantum chaos [86].

While writing this review, we have tried to collect a large list of references which is
however far from being exhaustive. Reference [157] provides a reference book on strong
localization, mostly focused on spectrum and localization properties (see also [158] for a
review on 1d discrete models and Lifshitz tails). A recent text about disorder and random
matrix theory is [86]. Many excellent reviews have been written on weak localization, among
them [34, 55] (for the role of disorder and electron–electron interaction, see the book [87] or
[152]). A recent reference is [4].

1.2. Overview of the review

Section 2 shows that several functionals of the Brownian motion arise in the study of electronic
transport in weakly disordered metals or semiconductors (weakly localized). The brief
presentation of weak localization given in sections 2.1 and 2.2 follows the heuristic discussion
of [13, 55], which is based on the picture proposed by Khmel’nitzkiı̆ and Larkin. In spite of
its heuristic character, it allows drawing suggestive connections with well-known functionals
of the Brownian motion.

respectively. Note that one must be careful with the coefficient involved in this relation since the definitions of λRMT
and �e differ slightly in RMT and in perturbation theory.
8 The elastic mean free path �e = vF τe is given by the self-energy 1/(2τe) = − Im 	R(E). For example, for a
Gaussian disorder with local correlations, 〈V (x)V (x′)〉 = wδ(x − x′), we obtain 1/τe � 2πρ0w for a weak disorder,
where ρ0 is the free density of states. In one dimension ρ0 = 1/(πvF ), therefore �e � v2

F /(2w), which coincides
with the high energy (weak disorder) expansion of the localization length λ � 2v2

F /w [15, 157].



R344 Topical Review

Sections 3 and 4 deal with problems of strong localization in one dimension. A powerful
approach to handle such problems is the phase formalism9 (presented in [15, 157] for instance).
This formalism leads to a broad variety of stochastic processes. Section 3 discusses scattering
properties of a random potential, and section 4 studies spectral properties of a Schrödinger
operator defined on a finite interval.

In section 5, we review some results obtained for networks of wires (graphs), which can be
viewed as systems of intermediate dimension between one and two. We will put the emphasis
on spectral determinants, which appear to be an efficient tool to construct several generating
functions characterizing the diffusion on graphs (or its discrete version, the random walk).

Finally, in section 6, we show that the physics of a two-dimensional quantum particle
submitted to the magnetic field of an assembly of randomly distributed magnetic vortices
involves fine properties of planar Brownian motion.

2. Functionals of Brownian motion in the context of weak localization

2.1. Feynman paths, Brownian motion and weak localization

In the path integral formulation of quantum mechanics, each trajectory is weighted with a phase
factor eiS/h̄ where S is the classical action evaluated along this trajectory. The superposition
principle states that the amplitude of propagation of a particle between two different points is
given by the sum of amplitudes over all paths connecting these two points. This formulation of
quantum mechanics is most useful when there is a small parameter with respect to which one
can make a quasiclassical expansion. One encounters a similar situation in the derivation of
geometrical optics starting from wave optics. In this case the small parameter is the ratio of
the wave length to the typical distances which are involved in the problem and the classical
paths are light rays. In the context of weak localization the small parameter is λF /�e and
the quasiclassical approximation amounts to sum over a certain subset of Brownian paths.
The fact that Brownian paths come into the problem is not so surprising if one goes back
to our previous physical picture of electrons performing random walks due to scattering by
impurities. In the continuum limit, describing the physics at length scales much larger than
�e, this random walk may be described as a Brownian motion. It can be shown that 〈�σ 〉 is
related to the time integrated probability for an electron to come back to its initial position
(see [55] for a heuristic derivation or [4] for a recent derivation in space representation):

〈�σ 〉 = −2e2D

πh̄

∫ ∞

τe

dt P(�r, t |�r, 0) e−t/τϕ , (2)

where D is the diffusion constant and the factor 2 accounts for spin degeneracy. P(�r, t |�r ′, 0)

is Green’s function of the diffusion equation(
∂

∂t
− D�

)
P(�r, t |�r ′, 0) = δ(�r − �r ′)δ(t). (3)

In equation (2) the exponential damping at large time describes the lack of phase coherence
due to inelastic processes. The phase coherence time τϕ can be related to the phase coherence
length by L2

ϕ = Dτϕ . We have also introduced a cut-off at short time in equation (2) that takes
into account the fact that the diffusion approximation is only valid for times larger than τe.

9 The phase formalism is a continuous version of the Dyson–Schmidt method [83, 188]. A nice presentation can be
found in [158].
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2.2. Planar Brownian motion: stochastic area, winding and magnetoconductance

Weak localization corrections are directly related to the behaviour of the probability of return
to the origin and thus to recurrence properties of the diffusion process. It therefore follows that
dimension d = 2 plays a very special role. Consider for instance a thin film whose thickness
a is much less than Lϕ . The sample is effectively two dimensional and the correction to the
conductivity is given by

〈�σ 〉 = − e2

π2h̄
ln(Lϕ/�e). (4)

On probabilistic grounds the logarithmic scaling is of course not unexpected here, it is the
same logarithm which occurs in asymptotic laws of planar Brownian motion [151, 181]. The
neighbourhood recurrence of planar Brownian motion favours quantum interference effects
and leads to a reduction of the electrical conductivity. A more striking effect is predicted if
one applies a constant and homogeneous magnetic field B over the sample. In this case the
classical action contains a coupling to the magnetic field S = eBA where A is a functional of
the path given by the line integral

A = 1

2

∫
(x dy − y dx). (5)

Properly interpreted, this line integral is nothing but the stochastic area of planar Brownian
motion, whose distribution was first computed by P Lévy before the discovery of the Feynman
path integral. The weak localization correction reads

〈�σ(B)〉 − 〈�σ(0)〉 = e2

2π2h̄

∫ ∞

0

dt

t
e−t/τϕ (1 − E [e2ieBA/h̄]). (6)

The coupling to the magnetic field now appears with an additional factor 2 coming from
the fact that the weak localization describes quantum interferences of reversed paths. The
expectation E[· · ·] is taken over Brownian loops for a time t. The magnetoconductivity is
given by [12, 34, 55]

〈�σ(B)〉 − 〈�σ(0)〉 = e2

2π2h̄

[
ψ

(
1

2
+

φ0

8πBL2
ϕ

)
− ln

(
φ0

8πBL2
ϕ

)]
� 4

3

e2

h̄

(
BL2

ϕ

φ0

)2

, (7)

where ψ(z) is the digamma function and φ0 = h/e is the quantum flux. The rhs corresponds
to the weak field limit B � φ0

/
L2

ϕ . This increase of the conductivity with magnetic field
is opposite to the behaviour expected classically. This phenomenon is called ‘positive (or
anomalous) magnetoconductance’. Experimentally this effect is of primary importance: the
magnetic field dependence allows one to distinguish the weak localization correction from
other contributions and permits us to extract the phase coherent length Lϕ . This expression
fits the experimental results remarkably well10 [34].

Strictly speaking equation (7) only holds for an infinite sample. In the case of bounded
domains the variance depends on the geometry of the system and can be computed explicitly
for rectangles and strips [76]. The case of inhomogeneous magnetic fields can be treated
along the same line. Consider for instance a magnetic vortex carrying a flux φ and threading
the sample at point 0. In this case the functional which is involved is not the stochastic area
but the index of the Brownian loop with respect to 0 (winding number). The probability
distribution of the index has been computed independently by Edwards [85] in the context of
polymer physics and Yor [227] in relation to the Hartman–Watson distribution. For a planar

10 Note that in materials with strong spin–orbit scattering, such as gold, the effect is reversed and a negative
magnetoconductance is observed at small magnetic fields [34, 127].
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Brownian motion started at r and conditioned to hit its starting point at time 1, the distribution
of the index when n goes to infinity is

Proba[Ind = n] � 1

2π2n2
K0(r

2) e−r2
, (8)

where K0(x) is the modified Bessel function of second kind (MacDonald function). The fact
that the even moments of this law are infinite is reflected in the non-analytic behaviour of the
conductivity

〈�σ(φ)〉 − 〈�σ(0)〉 ∝ |φ|. (9)

It is interesting to compare with equation (7) where the quadratic behaviour is given by the
second moment of the stochastic area [169]. The behaviour given by equation (9) has been
observed experimentally [31, 107] and a theoretical interpretation is provided in [182].

2.3. Dephasing due to electron–electron interaction and functionals of Brownian bridges

2.3.1. Dephasing in a wire: relation with the area below a Brownian bridge. Another
interesting example of a non-trivial connection between a physical quantity and a functional
of Brownian motion occurs in the study of electron–electron interaction and weak localization
correction in a quasi-1d metallic wire. In [9], Al’tshuler, Aronov and Khmel’nitzkiı̆ (AAK)
proposed to model the effect of the interaction between an electron and its surrounding
environment by the interaction with a fluctuating classical field. The starting point is a path
integral representation of the probability P(�r, t |�r ′, 0) in which is included the effect of the
fluctuating field that brings a random phase. After averaging over Gaussian fluctuations of the
field, given by the fluctuation–dissipation theorem, AAK obtained

〈�σ 〉 = −2
e2D

πSw

∫ ∞

0
dt e−γ t

∫ x(t)=x

x(0)=x

Dx(τ)

× exp

(
− 1

4D

∫ t

0
dτ ẋ(τ )2 − e2T

σ0Sw

∫ t

0
dτ |x(τ) − x(t − τ)|

)
, (10)

where T is the temperature (the Planck and Boltzmann constants are set equal to unity
h̄ = kB = 1), and Sw is the area of the section of the quasi-1d wire. In contrast with
equation (2) where the loss of phase coherence was described phenomenologically by an
exponential damping11 with the parameter τϕ , here the electron–electron interaction affects
the weak localization correction through the introduction in the action of the functional of the
Brownian bridge12

Ãt =
∫ t

0
dτ |x(τ) − x(t − τ)|. (11)

The additional damping exp −γ t in equation (10) describes the loss of phase coherence due
to other phase breaking mechanisms. By using a trick which makes the path integral local in
time, AAK have computed explicitly the path integral and obtained:

〈�σ 〉 = e2

πSw
LN

Ai(γ τN)

Ai′(γ τN)
, (12)

11 Note that the introduction of an exponential damping describes rigorously several effects: the loss of phase
coherence due to spin–orbit scattering or spin-flip [127], the penetration of a weak perpendicular magnetic field in
a quasi-1d wire [8]. In this latter case the effect of the magnetic field is taken into account through γ = 1

3 (eBW)2

where W is the width of the wire of rectangular section.
12 A Brownian bridge, (x(τ ), 0 � τ � 1|x(0) = x(1)), is a Brownian path conditioned to return to its starting point.
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t/2
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τ
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Figure 1. Left: the functional At gives the absolute area below a Brownian bridge x(τ). Right:
The functional Ãt measures the area between the Brownian bridge x(τ) and its time reversed
counterpart x(t − τ). The two functionals are equal in law (equation (14)).

where Ai(z) is the Airy function. The Nyquist time, τN = (
σ0Sw

e2T
√

D

)2/3
, gives the time scale

over which electron–electron interaction is effective and therefore plays the role of a phase
coherence time. We have also introduced the corresponding length LN = √

DτN . Note
that the T dependence of τN ∝ T −2/3 directly reflects the scaling of the area with time:

Ãt
(law)= t3/2Ã1. We stress that the AAK theory makes a quantitative prediction for the

dependence of the phase coherence length LN as a function of the temperature, which has
been verified experimentally for a wide range of parameters: on metallic (gold) wires [84,
180] (the behaviour of LN ∝ (Sw/T )1/3 was observed before in aluminium and silver wires
[224]), and on wires etched at the interface of two semiconductors [213].

It is interesting to point out that the result of AAK can be interpreted as the Laplace
transform of the distribution of the functional (11), E[exp −pÃt ]. This functional represents
the area between a Brownian bridge and its time reversed counterpart (cf figure 1(b)), where
E[· · ·] describes averaging over Brownian bridges. The conjugate parameter p is played in (10)
by the temperature: p = e2T

σ0Sw
. Result (12) has also been derived in the probability literature.

Let us consider the functional

At =
∫ t

0
dτ |x(τ)|, (13)

giving the absolute area below the Brownian bridge starting from the origin, x(0) = x(t) = 0
(cf figure 1(a)). The double Laplace transform of the distribution of At has been computed
first by Cifarelli and Regazzini [58] in the context of economy and independently by Shepp
[195], and led to

∫ ∞
0

dt√
t

e−γ tE[e−√
2At ] = −√

π
Ai(γ )

Ai′(γ )
, which is equivalent13 to the result (12).

The connection between the two results is clear from the equality in law 14:

At
(law)= Ãt (14)

which follows from15

x(τ) − x(t − τ)
(law)= x(2τ) for τ ∈ [0, t/2]. (15)

Relation (14) allows us to understand more deeply the trick used by AAK to make the path
integral (10) local in time. The distribution of the area At has been also studied by Rice in
[183]. Interestingly, the inverse Laplace transform of equation (12) obtained by Rice has been
rederived recently independently in [168] in order to analyse the loss of phase coherence due
to electron–electron interaction in a time representation.

13 Note that the 1/
√

t in the integral computed by Shepp corrects the fact that the averaging over Brownian curves in
(10) is not normalized to unity, whereas E[· · ·] is.
14 For a given process x(τ) the two functionals At and Ãt are obviously different, however they are distributed
according to the same probability distribution. They are said ‘equal in law’.
15 Relation (15) is easily proved by using that a Brownian bridge (x(τ ), 0 � τ � 1|x(0) = x(1) = 0) can be written
in terms of a free Brownian motion (B(τ), τ � 0|B(0) = 0) as x(τ) = B(τ) − τB(1).



R348 Topical Review

The study of statistical properties of the absolute area below a Brownian motion was first
addressed by Kac [135] for a free Brownian motion, long before the case of the Brownian
bridge studied by Cifarelli and Regazzini and by Shepp. Later on, it has been extended to other
functionals of excursions and meanders16 [133, 179], which arise in a number of seemingly
unrelated problems such as computer science, graph theory [95] and statistical physics
[160, 161].

2.3.2. Dephasing in a ring. Very recently, the question of dephasing due to electron–electron
interaction in a weakly disordered metal has been raised again in [159]. In particular it has
been shown that the effect of the geometry of the ring and the effect of electron–electron
interaction combine in a non-trivial way leading to a behaviour of the harmonics of the
magnetoconductance that differs from that predicted by equation (2) in [10]. For the ring, the
functional describing the effect of electron–electron interaction on weak localization is now
given by

Rt =
∫ t

0
dτ |x(τ)|

(
1 − |x(τ)|

L

)
(16)

instead of the area defined by equation (13). x(τ) is a Brownian path17 on a ring of perimeter
L such that x(0) = x(t) = 0. The question has been re-examined in more detail in [211],

where the double Laplace transform of the distribution
∫ ∞

0 dt e−γ t 1√
t

e− (nL)2

2t En[e−Rt ] has been
derived. En[· · ·] denotes averaging over Brownian bridges defined on a circle, with winding
number n. Note that the Laplace transform of the distribution En[e−Rt ] has been also studied
in [211].

3. Exponential functionals of Brownian motion and Wigner time delay

3.1. Historical perspective

Exponential functionals of the form,

A
(µ)
t =

∫ t

0
ds exp −2(B(s) + µs) (17)

where (B(s), s � 0, B(0) = 0) is an ordinary Brownian motion have been the object of
many studies in mathematics [228], mathematical finance and physics [64]. In the physics of
classical disordered systems, the starting point was the analysis of the series (Kesten variable)

Z = z1 + z1z2 + z1z2z3 + · · · (18)

where the zi are independent and identical random variables. Several papers have been devoted
to the study of this random variable in the physics [68, 71] and mathematics [138, 217]
literature. It was realized that Z is the discretized version of A

(µ)
∞ defined in equation (17),

which may be interpreted as a trapping time in the context of classical diffusion in a random
medium. The tail of the probability distribution P(Z) controls the anomalous diffusive
behaviour of a particle moving in a one-dimensional random force field [42]. The functional
A

(µ)
t also arises in the study of the transport properties of disordered samples of finite length

16 An excursion is a part of a Brownian path between two consecutive zeros and a meander is the part of the path after
the last zero.
17 As for the case of the wire, the functional involved in the study of dephasing in the ring [211] involves the
difference x(τ) − x(t − τ) instead of the bridge x(τ). We have used the equality in law (15) which implies the
following property: given a Brownian bridge (x(τ ), 0 � τ � t |x(0) = x(t) = 0), for any even function f (x) we

have
∫ t

0 dτf (x(τ) − x(t − τ))
(law)= ∫ t

0 dτf (x(τ)).
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[170, 173]. In the context of one-dimensional localization the fact that the norm of the
wavefunction is distributed18 as A

(1)
∞ is mentioned in the book of Lifshitz et al [157].

3.2. Wigner time delay

As discussed in the introduction, the localization of quantum states in one dimension is well
understood. However since real systems are not infinite, asking about the nature of the states
which are not in the bulk is a perfectly legitimate question. It was pointed out by Azbel in [21]
that, when a disordered region is connected to a region free of disorder, the localized states
acquire a finite lifetime which shows up in transport through sharp resonances, referred to as
‘Azbel resonances’. This picture was used in [132] where it was argued that these resonances
could be probed in scattering experiments and lead to an energy-dependent random time
delay of the incident electronic wave. Motivated by this result and by developments in random
matrix theory we consider the scattering problem for the one-dimensional Schrödinger equation
(in units h̄ = 2m = 1)

− d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (19)

defined on the half line x � 0 with the Dirichlet boundary conditions ψ(0) = 0. The potential
V (x) has its support on the interval [0, L]. Outside this interval, the scattering state of energy
E = k2 is given by

ψE(x) = 1√
hvE

(e−ik(x−L) + eik(x−L)+iδ), (20)

where h = 2π is the Planck constant (in unit h̄ = 1) and vE = dE/dk = 2k the group
velocity. Equation (20) represents the superposition of an incoming plane wave incident from
the right and a reflected plane wave characterized by its phase shift δ(E). The Wigner time
delay, defined by the relation τ = dδ/dE, can be understood as the time spent by the wave
packet of energy E in the disordered region (this interpretation is only valid at high energy; see
[50, 69, 125, 149] for review articles on time delay and traversal times). This representation
of the time delay has been used in many papers both in the mathematics and physics literature.
Starting from this representation one can derive a system of stochastic differential equations
which can be studied in certain limiting cases. However, to understand the universality of
the statistical properties of the Wigner time in the high-energy limit, we follow a different
approach below.

3.2.1. Universality of time delay distribution at high energy. Using the expression of the
scattering state (20) and the definition τ = dδ/dE, we can obtain the so-called Smith formula
[98, 196] relating the time delay to the wavefunction in the bulk:

τ(E) = 2π

∫ L

0
dx|ψE(x)|2 − 1

2E
sin δ(E). (21)

Following [15] one can parametrize the wavefunction in the bulk in terms of its phase and
modulus. For this purpose we rewrite the Schrödinger equation as a set of two coupled first
order differential equations, dψE/dx = ψ ′

E and dψ ′
E/dx = (V (x) − E)ψE , and perform the

change of variables: ψE(x) = eξ(x) sin θ(x) and ψ ′
E(x) = k eξ(x) cos θ(x). One obtains a new

set of first-order differential equations dθ/dx = k− 1
k
V (x) sin2 θ and dξ/dx = 1

2k
V (x) sin 2θ .

18 When µ > 0, A
(µ)
t possesses a limit distribution for t → ∞. Moreover, we have the equality in law (see

footnote 14): A
(µ)
∞

(law)= 1/γ (µ), where γ (µ) is distributed according to a �-law: P(γ ) = 1
�(µ)

γ µ−1 e−γ .
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Up till now everything is exact. If we now consider the high energy limit19 we can neglect the
second term on the rhs of equation (21) and integrate out the phase which is a fast variable;
we obtain

τ = 1

k

∫ L

0
dx e2(ξ(x)−ξ(0)). (22)

This representation of the time delay holds for any realization of the disordered potential.
Moreover, one can prove under rather mild conditions on the correlations of the random
potential that ξ(x) is a Brownian motion with drift ξ(x) = x/λ +

√
1/λB(x) where B(x) is

an ordinary Brownian motion and λ the localization length. Using the scaling properties of
Brownian motion gives the following identity in law

τ
(law)= λ

k

∫ L/λ

0
dx e−2(B(x)+x) = λ

k
A

(1)
L/λ, (23)

where A
(1)
L has been defined in equation (17). This representation of the time delay as an

exponential functional of Brownian motion, first established in [93] by a different method,
allows us to obtain a number of interesting results [65, 207]:

(i) Existence of a limit distribution for fixed20 τ and L → ∞

P(τ) = λ

2kτ 2
e− λ

2kτ . (24)

This result is reminiscent of the random matrix theory prediction in spite of the fact that
this theory does not apply to systems that are strictly one dimensional21.

(ii) Linear divergence of the first moment, 〈τ 〉 = L/k, and exponential divergence of the
higher moments 〈τn〉 ∝ e2n(n−1)L/λ. This divergence reflects a log–normal tail of the
distribution for a finite length L.

3.2.2. Time delay and density of states. Relation (21) also provides another interpretation
to these results. In the situation under consideration, the scattering state is directly related
to the local density of states (LDoS) by ρ(x;E) = 〈x|δ(E − H)|x〉 = |ψE(x)|2. Therefore
the time delay can be interpreted as the DoS of the disordered region22. This establishes a
relation between the results given above and the work of Al’tshuler and Prigodin [14] where
the distribution of the LDoS was studied for a white noise potential using the method of
Berezinskiı̆23.

3.2.3. Time delay for Dirac Hamiltonian at the threshold energy. The representation (23) of
the time delay as an exponential functional of the Brownian motion only holds in the weak

19 To define precisely the high-energy limit, let us introduce the integral of the correlation function of the disorder
w = ∫

dx〈V (x)V (0)〉. The high-energy limit corresponds to k 	 w1/3.
20 From the remark of footnote 18, we note that 1/τ is distributed according to an exponential law.
21 The random matrix theory describes the regime of weak localization or systems whose classical dynamics is chaotic.
The distribution of time delay in this framework has the same functional form P(τ) ∝ 1

τ2+µ e−τ0/τ [47, 102, 114,
174] with two differences: (i) the exponent 2 + µ > 2, (ii) the time scale τ0.
22 The relation between time delay and DoS is sometimes referred as Krein–Friedel relation [97, 144]. This relation
has originally been introduced in [37] in the context of statistical physics (see also [67] and section 77 of [148]). Note
that it has recently been discussed in the context of graphs in [205, 206, 208].
23 The method of Berezinskiı̆ blocks has been introduced to study specifically the case of white noise disordered
potential in one dimension [32]. This powerful approach has been widely used and has allowed us to derive numbers
of important results like in [112, 115] for example.
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disorder (i.e. high energy) limit. A similar representation can be derived for the random mass
Dirac model at the middle of the spectrum. The Dirac Hamiltonian is

HD = σ2i
d

dx
+ σ1φ(x), (25)

where σi are the Pauli matrices. φ(x) can be interpreted as a mass24. The Dirac equation
HDψ = kψ possesses a particle–hole symmetry reflected in the symmetry of the spectrum
with respect to k = 0 (the dispersion relation of the Dirac equation is linear in the absence of
the mass term and energy is equal to momentum). The middle of the spectrum is an interesting
point where the divergence in the localization length signals the existence of a delocalized state
(see footnote 31). These properties should therefore show up in the probability distribution of
the Wigner time delay. Since the dispersion relation of the Dirac equation is linear, the time
delay is now defined as τ = dδ/dk. The following representation has been derived in [198]:

τ = 2
∫ L

0
dx exp

(
2
∫ x

0
φ(y) dy

)
. (26)

In contrast with equations (22) and (23), which have been obtained after averaging over the
fast phase variable, the representation (26) is exact (for k = 0). If φ(x) is a white noise, then

τ = 2

g
A

(0)
gL. (27)

In this case since the drift vanishes, it is known [170, 228] that there is no limiting distribution
when L → ∞. The physical meaning of the log–normal tail

P(τ) ∼ 1

2τ
√

2πgL
e− 1

8gL
ln2(gτ) (28)

in the limit τ → ∞ is discussed in detail in [198].

4. Extreme value spectral statistics

The density of states (DoS) and the localization length of a one-dimensional Hamiltonian with
a random potential can be studied by the phase formalism [15, 157] (see also [158] for discrete
models). In the previous section we pointed out that the physics of the strong localization in
one dimension can also be probed from a different angle by considering the scattering of a
plane wave by the random potential. This has led to the study of the Wigner time delay. In
this section we show that the phase formalism also allows describing finer properties of the
spectrum such as the probability distribution of the nth eigenvalue. This is an instance of an
extreme value statistics: given a ranked sequence of N random variables x1 � x2 � · · · � xN ,
the problem is to find the distribution of the nth of these variables in a given interval. In the
particular case of uncorrelated random variables, the extreme value distributions have been
studied by E Gumbel [119–121]. This problem becomes much more complicated when
the random variables are correlated, a case which has recently attracted a lot of attention.
Such extreme value problems have appeared recently in a variety of problems ranging from
disordered systems [44, 54, 70] to certain computer science problems such as growing search
trees [162]. In the case of the spectrum of a random Hamiltonian, the eigenvalues are in general

24 The Hamiltonian (25) with φ(x) a white noise was introduced by Ovchinnikov and Erikmann [176] as a model of
a one-dimensional semiconductor with a narrow fluctuating gap. It is interesting to point out that the Dirac equation
HDψ = kψ also has an interpretation in the context of superconductivity, as linearized Bogoliubov–de Gennes
equations for a real random superconducting gap φ(x). Finally it is worth mentioning that more general 1d Dirac
Hamiltonians with several kinds of disorder (mass term, potential term and magnetic field) have been studied in
[38, 39].
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correlated variables, apart from the case of strongly localized eigenstates [167]. Below we
show that, in the one-dimensional case, this problem is related to studying the first exit time
distribution of a one-dimensional diffusion process.

4.1. Distribution of the nth eigenvalue: relation with a first exit time distribution

We consider a Schrödinger equation Hϕ(x) = Eϕ(x) on a finite interval [0, L]. The spectral
(Sturm–Liouville) problem is further defined by imposing suitable boundary conditions. We
choose the Dirichlet boundary conditions ϕ(0) = ϕ(L) = 0. The spectrum of H is denoted
by Spec(H) = {E0 < E1 < E2 < · · ·}. Our purpose is to compute the probability

Wn(E) = 〈δ(E − En)〉 (29)

for the eigenvalue En to be at energy E (the bracket 〈· · ·〉 means averaging over the random
potential). Note that the sum of these distributions 1

L

∑
n Wn(E) = ρ(E) is the average DoS

per unit length. We now show how the calculation of Wn(E) can be cast into a first exit time
problem.

4.1.1. Random Schrödinger Hamiltonian. We consider the Hamiltonian

H = − d2

dx2
+ V (x), (30)

where V (x) is a Gaussian white noise random potential: 〈V (x)〉 = 0 and 〈V (x)V (x ′)〉 =
wδ(x − x ′).

We replace the Sturm–Liouville problem by a Cauchy problem: let ψ(x;E) be the
solution of the Schrödinger equation Hψ(x;E) = Eψ(x;E) with the boundary conditions
ψ(0;E) = 0 and d

dx
ψ(0;E) = 1. The boundary condition ψ(L;E) = 0 is fulfilled whenever

the energy E coincides with an eigenvalue En of the Hamiltonian. In this case, the wavefunction
ϕn(x) = ψ(x;En)

/[ ∫ L

0 dx ′ψ(x ′;En)
2
]1/2

has n nodes in the interval ]0, L[, and two nodes
at the boundaries.

Let us denote by �m (m � 1), the length between two consecutive nodes. We consider
the Ricatti variable

z(x;E) = d

dx
ln |ψ(x;E)|, (31)

which obeys the following equation:

d

dx
z = −E − z2 + V (x), (32)

with initial condition z(0;E) = +∞. This equation may be viewed as a Langevin equation for
a particle located at z submitted to a force −∂U(z)/∂z deriving from the unbounded potential

U(z) = Ez +
z3

3
(33)

and to a random white noise V (x).
Each node of the wavefunction corresponds to |z(x)| = ∞. At ‘time’ x = 0 the ‘particle’

starts from z(0) = +∞ and eventually ends at z(�1 − 0+) = −∞ after a ‘time’ �1. Just
after the first node it then starts again from z(�1 + 0+) = +∞, due to the continuity of the
wavefunction. It follows from this picture that the distance �m between two consecutive nodes
may be viewed as the ‘time’ needed by the particle to go through the interval ]−∞, +∞[ (the
‘particle’ is emitted from z = +∞ at initial ‘time’ and absorbed when it reaches z = −∞).
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Figure 2. The probability for the nth level En of the spectrum to be at E is also the probability for
the (n + 1)th node of ψ(x; E) to be at L.

The distances �m are random variables, interpreted as times needed by the process z to go
from +∞ to −∞. These random variables are statistically independent because each time
the variable z reaches −∞, it loses the memory of its earlier history since it is brought back
to the same initial condition and V (x) is δ-correlated. This remark is a crucial point for
the derivation of Wn(E). Interest in these random ‘times’ �m lies in their relation with the
distribution of the eigenvalues. Indeed the probability that the energy En of the nth excited
state is at E is also the probability that the sum of the n + 1 distances between the nodes is
equal to the length of the system: L = ∑n+1

m=1 �m (this is illustrated in figure 2). Since the �m

are independent and identically distributed random variables Prob
[
L = ∑n+1

m=1 �m

]
is readily

obtained from the distribution P(�) of one of these variables.
We introduce the intermediate variable L(z) giving the time needed by the process starting

at z to reach −∞: therefore we have � = L(+∞). The Laplace transform of the distribution
h(α, z) = 〈e−αL | z(0) = z; z(L) = −∞〉 obeys [105]

Gzh(α, z) = αh(α, z), (34)

where the backward Fokker–Planck generator is

Gz = −U ′(z)∂z +
w

2
∂2
z . (35)

The boundary conditions are ∂zh(α, z)|z=+∞ = 0 and h(α,−∞) = 1. By Laplace inversion
we can derive P(�) since h(α, +∞) = ∫ ∞

0 d�P (�) e−α�.
The solution of this problem is given in [204]. Here we only consider the limit E → −∞,

which corresponds to the bottom of the spectrum. In this regime the dynamics of the Ricatti
variable z can be read off from the shape of the potential (see figure 3).

The particle falls rapidly into the well from which it can only escape by a fluctuation of
the random force. Therefore the time needed to go from +∞ to −∞ is dominated by the time
spent in the well, which is distributed according to the Arrhenius formula. It follows that the
average ‘time’, which is related to the inverse of the integrated density of states (IDoS) per
unit length N(E) = ∫ E

0 dE′ρ(E′), behaves as 〈�〉 = N(E)−1 � π√−E
exp 8

3w
(−E)3/2. This

simple picture, first provided by Jona–Lasinio [134], allows recovering of the exponential tail
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(U z)

E<0

z

Figure 3. The potential (33) related to the deterministic force to which the Ricatti variable is
submitted in equation (32).

obtained by several methods in [15, 99, 124, 130, 157]25. The distribution of the length � is a
Poisson law (see [105] or the appendix of [204]):

P(�) = N(E) exp −�N(E). (36)

Using this result we can show that [204]

Wn(E) = Lρ(E)
(LN(E))n

n!
e−LN(E). (37)

This result has a clear meaning: Lρ(E) gives the probability of finding any level at E and the
factor xn

n! e−x ‘compels’ the number of states below E, x = LN(E), to be close to n. We may
go further and write

Wn(E) = 1

δEn

ωn

(
E − E

typ
n

δEn

)
, (38)

where the typical value of the energy is E
typ
n (L) = −(

3w
8 ln L̃

)2/3
, while the scale of the

fluctuations reads δEn = w2/3

2
√

n+1
(3 ln L̃)−1/3, where L̃ = Lw1/3

2π(n+1)
. The function

ωn(X) = (n + 1)n+ 1
2

n!
exp (

√
n + 1 X − (n + 1)eX/

√
n+1) (39)

has the form of a Gumbel law for uncorrelated random variables. The fact that the eigenvalues
are uncorrelated is a consequence of the strong localization of the eigenfunctions [167].

The work summarized in the above paragraph, which appeared in [204], generalizes the
result of McKean [165] for the ground state.

A similar result was obtained by Grenkova et al [117] for the model of δ-impurities with
random positions, in the limit of low impurity density which has no counterpart in the model
we considered here26. However both models describe the same physics of strongly localized
eigenstates.

4.1.2. Supersymmetric random Hamiltonian. Random Schrödinger operators have been
investigated through a wide range of models. Depending on the physical context, there are
indeed many ways to model the disorder. In the previous section we have assumed that the
potential V (x) is a white noise. We have also mentioned that if the potential is a superposition
of δ-potentials randomly distributed along the line, although the spectra of the two models are

25 It is interesting to quote [145] where it was shown that this non-perturbative exponential tail can be obtained by a
simple counting method of ‘skeleton’ diagrams assuming that they all have the same value (this approach was also
applied to the 3d case).
26 See footnote 27.
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quite different27, the extreme spectral statistics are the same. The localization properties and
the statistics of the time delay at high energy are also similar for both models [203, 207]. These
two models belong to the same class of random Hamiltonians with a random scalar potential
with short-range correlations. They are both continuous versions of discrete tight binding
models with on-site random potential. This is the case of so-called diagonal disorder, since
the random potential appears on the diagonal matrix elements of the tight binding Hamiltonian
on the basis of localized orbitals28.

Other interesting models can be constructed by introducing disorder in the hoppings,
instead. We refer to such models as off-diagonal disorder. The Dirac Hamiltonian (25)
introduced above provides a continuum limit of such a model29. Dirac Hamiltonians appear
naturally in several contexts of condensed matter physics. The existence of symmetries in
the Dirac Hamiltonian30 (particle–hole, chiral, . . . ) can lead to interesting features in the
presence of disorder, which has attracted some attention (see for example [7, 39, 40, 48,
49, 88, 172]; reference [88] gives a brief overview). The square of the Dirac Hamiltonian,
H 2

D = −d2
x + φ(x)2 + σ3φ

′(x), is related to the pair of supersymmetric Schrödinger isospectral
Hamiltonians H± = −d2

x + φ(x)2 ± φ′(x). When 〈φ(x)〉 = 0 we may forget the sign and
simply consider:

HS = − d2

dx2
+ φ(x)2 + φ′(x). (40)

Such Hamiltonians appear in a variety of problems ranging from the 1d classical diffusion
in a random force [42, 128], electronic structure of polyacetylene [200], spin Peierls chains
[91, 92, 199] and also in a continuum limit of the random field XY model [122] (see [66] for
a short review on supersymmetric disordered quantum mechanics). Spectral and localization
properties have been studied in detail when φ(x) is a white noise [41, 42, 157, 176] and also
when φ(x) has a finite correlation length as in a random telegraph process [61] (this last case
has found some application in the context of spin Peierls chains).

In the high-energy limit, the localization properties and the statistics of the time delay do
not show any difference with respect to the case of diagonal disorder. However the low-energy
properties are quite different. This is easily understood by noting that, due to its relation
to the Dirac Hamiltonian, the supersymmetric Hamiltonian can be factorized as HS = Q†Q
where Q = −dx + φ(x) and Q† = dx + φ(x). In particular, such a structure enforces a
positive spectrum: Spec(HS) ⊂ R

+. When φ(x) is white noise of zero mean, 〈φ(x)〉 = 0 and
〈φ(x)φ(x ′)〉 = gδ(x − x ′), the case considered below, the DoS presents a logarithmic Dyson

27 The model of δ-impurities with random positions was introduced and studied by Schmidt [188] but often referred
as the Frisch and Lloyd model [99]. Compared to the model for white noise potential, which is characterized by one
parameter, the Frisch & Lloyd model is characterized by two parameters: the strength of the δ-potential, and their
density. In the limit of high density of impurities this model is equivalent to the white noise potential model. The limit
of low density presents different spectral singularities (Lifshitz singularity and, for negative weight of δ-potentials,
an additional Halperin singularity in the negative part of the spectrum).
28 Note that the continuum limit of tight binding Hamiltonian with diagonal disorder can lead to different continuous
models. Let us consider the discrete model Hi,j = −δi,j+1 − δi,j−1 + δi,j Vi . For Vi = 0 the spectrum is
Ek = −2 cos(k), with k ∈ ]−π, π ]. (A) If the continuous limit is taken by considering the band edge (k ∼ 0),
one is led to the continuous model (30). (B) If the band centre is considered instead (k ∼ π/2), the spectrum can be
linearized and one is led to a Dirac Hamiltonian, as in [137, 176]. This point has been recently rediscussed in [189].
29 The continuum limit of a tight binding Hamiltonian with random hoppings has been discussed in [200] (see also
the review in [169]). As pointed in footnote 28, random Dirac Hamiltonians can also appear as continuum limit of
the band centre of a discrete models with diagonal disorder.
30 A complete classification of symmetries of disordered Hamiltonians extending the famous Wigner–Dyson
ensembles of random matrix theory has been provided in [7, 216, 229] (see also the recent review article [126]).
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Figure 4. The potential related to the deterministic force in equation (43) felt by the variable ζ .

singularity: the integrated density of states (IDoS) reads N(E) ∼ 1/ ln2 E [41, 42, 176], while
the localization length diverges logarithmically31 λ(E) ∼ ln(1/E).

It is interesting to investigate the extreme value statistics of the spectrum in the low-
energy regime, where we expect properties quite different from that obtained for the diagonal
disorder. The derivation follows closely that in the previous case, however the relevant random
processes and the approximations are different. The first step is to decouple the Schrödinger
equation HSϕ(x) = k2ϕ(x) into two first-order differential equations (i.e. go back to the Dirac
equation):

Q†χ(x) = kϕ(x) (41)

Qϕ(x) = kχ(x). (42)

Then we may use the phase formalism by introducing a phase variable and an envelope
variable: ϕ(x) = eξ(x) sin ϑ(x) and χ(x) = −eξ(x) cos ϑ(x). The phase variable obeys a
stochastic differential equation with a noise multiplying a trigonometric function of the phase.
For convenience we introduce an additive process ζ(x) defined as ζ(x) = ± 1

2 ln| tan ϑ(x)|.
The sign ‘+’ is chosen for (ϑ mod π) ∈ [0, π/2] and the sign ‘−’ for (ϑ mod π) ∈ [π/2, π ].
This new process obeys the stochastic differential equation

d

dx
ζ = k cosh 2ζ ± φ(x). (43)

Between two nodes of the wavefunction, the variable ζ twice crosses the interval ]−∞, +∞[.
Note that when φ(x) is a white noise of zero mean, the sign ± can be disregarded. The study
of the time required by the process to cross the interval can be performed by the same method
as above: we introduce the ‘time’ �̃(ζ ) needed to go from ζ to +∞. The Laplace transform
of the distribution h(α, ζ ) = 〈e−α�̃ | ζ(0) = ζ ; ζ(�̃) = +∞〉 obeys a diffusion equation(
k cosh 2ζ ∂ζ + g

2 ∂2
ζ

)
h(α, ζ ) = αh(α, ζ ) that involves the backward Fokker–Planck operator

related to the Langevin equation (43).
In the low-energy limit k � g we expect that most of the ‘time’ � ≡ �̃(−∞) is spent in

the region where the potential is almost flat (see figure 4), therefore we replace the diffusion
equation for h(α, ζ ) by the free diffusion equation g

2 ∂2
ζ h(α, ζ ) = αh(α, ζ ) on the finite interval

31 A more complete picture of the properties of this model at E = 0 is given in several works: (A) moments and
correlations of the zero mode are studied in [66,194]. (B) Additionally to the statistical properties of the time delay,
equation (27), (C) the distribution of the transmission probability is derived in [198]. In particular it was shown that
the average transmission through an interval of length L decreases like 〈T 〉 ∝ 1/

√
L, which is slower than in the

diffusive regime. (D) The existence of a finite conductivity was demonstrated in [111].
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ζ ∈ [ζ−, ζ+], with a reflecting boundary condition at one side ∂ζ h(α, ζ−) = 0 and h(α, ζ+) = 1
at the other side (which corresponds actually to the absorption at ζ = ζ+). The coordinates ζ±
are the points where the deterministic force and the white noise have equal strengths.

Now, we can obtain h(α, ζ ) straightforwardly,

〈e−α�〉 � h(α, ζ−) = 1

cosh
√

α/N(E)
, (44)

where N(E) = g/2 ln2(g/k) is the IDoS per unit length.
If � ≡ �̃(−∞) is the ‘time’ needed to cross the interval, the distance between two nodes of

the wavefunction is a sum of two such (independent) random variables � = �1 + �2. Therefore
its distribution is given by inverse Laplace transformation of 〈e−α�〉 = 1/cosh2 √

α/N(E).
We obtain

P(�) = N(E)�0(N(E)�), (45)

where �0(x) is the inverse Laplace transform of cosh−2 √
s:

�0(x) = Y(x)

∞∑
m=0

[π2(2m + 1)2x − 2] e− π2

4 (2m+1)2x �
x→∞

π2x e− π2

4 x (46)

= 4√
π

Y(x)

x3/2

∞∑
m=1

(−1)m+1m2 e−m2/x �
x→0

4√
π

Y(x)

x3/2
e−1/x, (47)

where Y(x) is the Heaviside function.
We find the distribution of the ground-state energy:

W0(E) = Lρ(E)�0(LN(E)), (48)

with the following limiting behaviour:

W0(E) � 8√
2πgL

1

E
exp − ln2(g2/E)

2gL
for E � g2 e−√

2gL (49)

� 8π2g2L2

E ln5(g2/E)
exp − π2gL

2 ln2(g2/E)
for g2 e−√

2gL � E � g2. (50)

In [204], an integral representation of Wn(E) is also given together with an explicit expression
for W1(E).

It is also interesting to point out that the ground-state distribution is characterized by
a typical value E

typ
0 � g2 e−gL, a median value Emed

0 ∼ g2 e−√
gL, and a mean value

〈E0〉 ∼ g2(gL)1/2 e−C(gL)1/3
where C is a numerical constant (see [204]). This latter expression

has also been obtained in [171] where upper and lower bounds were found using a perturbative
expression for the ground-state energy as a functional of φ(x).

The distribution (46) was obtained in [150] in the context of the classical diffusion by
using a real space renormalization group method. In this case the distribution is interpreted as
the distribution of the smallest relaxation time.

In summary, these two examples illustrate the fact that extreme value spectral statistics
provides an information on correlations of eigenvalues: the extreme value statistics of
independent and identically distributed random variables have been classified by Gumbel
[120]. Therefore extreme value distribution for eigenvalues that differ from one of the three
Gumbel’s laws indicates level correlations.
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5. Trace formulae, spectral determinant and diffusion on graphs

5.1. Introduction

Up to now we have discussed several questions related to the physics of weak and strong
localization. In the previous section we have considered spectral properties while in sections 2
and 3 we mostly discussed transport properties.

In the present section we are going to review several results related to the study of the
Laplace operator on metric graphs. An object at the core of our discussion is the spectral
determinant of the Laplace operator, formally defined as S(γ ) = det(γ − �), where γ

is a spectral parameter. This quantity encodes the information on the spectrum of the
Laplace operator on the graph. Subsection 5.2 recalls the basic conventions required to
describe metric graphs. Subsections 5.3 and 5.4 review general results on trace formulae
and spectral determinants. These subsections will appear at first sight quite technical and
unrelated to the previous sections. However we will see that there exists a close relation
with the question of quantum transport: the Laplace operator is the generator of the diffusion
on the graph and its spectral properties play a central role in the study of transport. This
connection, already evoked in the introduction and section 2, will be emphasized again in
subsection 5.6 where the explicit relation between quantum transport and spectral determinant
is recalled.

One interest for spectral determinants is that they can be used as generating functions
for various quantities characterizing the diffusion on the graph. This will be illustrated by
using the connection with trace formulae (section 5.3) and further exploited in subsection 5.6
in the context of quantum transport. The efficiency of the method stems from the fact
that, even though S(γ ) seems to be a complicated object at first sight, involving an infinite
number of eigenvalues, it can be expressed as the determinant of a finite size matrix. This
relation, established by Pascaud and Montambaux [177, 178], allows computing easily and
systematically the spectral determinant for arbitrary graphs.

The study of the Laplace operator on metric graphs (or quantum graphs) is not restricted
to transport and appears in many physical contexts ranging from organic molecules [187],
superconducting networks [6], phase coherent transport in networks of weakly disordered
wires [3, 81, 178, 210], transport in mesoscopic networks [20, 52, 106, 191, 192, 209, 218]
or metallic agregates [53]. We are not going to review this history and refer the interested
reader to [3, 6, 19, 59, 141, 143] (for a recent review see the appendix of Pavel Exner in
[5]). Mathematical aspects of quantum graphs are discussed in the recent issues of Waves
Random Media 14 (2004) and J. Phys. A: Math. Gen. 38 (22) (June 2005). See in particular
[146, 147].

5.2. Description of metric graphs

We collect some background material from the theory of graphs and establish our notations
and conventions (illustrated in figure 5).

Vertices, bonds, arcs. Let us consider a network of B wires (bonds) connected at V vertices.
The latter are labelled with Greek indices α, β, . . . . Therefore, the bonds of the graph can be
denoted by a couple of Greek indices (αβ). The oriented bonds, denoted as arcs, will also
play an important role. The two arcs related to the bond (αβ) will be labelled by αβ and βα

or more simply with Roman letters i, j, . . . .

Adjacency matrix. The basic object is the adjacency V × V matrix aαβ characterizing
the topology of the network: aαβ = 1 if α and β are connected by a bond; aαβ = 0
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α
β

i i

Figure 5. An example of graph with 11 vertices and 13 bonds. The arrows show the orientations
of the arc i and the reversed arc ī. The blue curve is an example of (primitive) orbit with one
backtracking.

otherwise32. The connectivity of the vertex α, denoted by mα , is related to the adjacency
matrix by mα = ∑

β aαβ . Summed over the remaining index, the adjacency matrix gives the
number of arcs:

∑
α,β aαβ = 2B.

Orbits. A path is an ordered set of arcs such that the end of an arc coincides with the
beginning of the following arc. The equivalence class of all closed paths equivalent by cyclic
permutations is called an orbit. An orbit is said to be primitive when it cannot be decomposed
as a repetition of a shorter orbit.

Scalar functions. The graphs we consider here are not simply topological objects but have
also some metric properties: the bond (αβ) is characterized by its length lαβ and identified
with the interval [0, lαβ ] of R. A scalar function ψ(x) is defined by its components ϕαβ(xαβ)

on each bond, where xαβ is the coordinate measuring the distance along the bond from the
vertex α (note that xαβ + xβα = lαβ).

Continuous boundary conditions. When studying the Laplace operator � acting on scalar
functions, boundary conditions at the vertices must be specified in order to ensure self-
adjointness of the operator. Let us introduce the notations:

ϕαβ ≡ ϕαβ(xαβ = 0) (51)

ϕ′
αβ ≡ dϕαβ

dxαβ

(xαβ = 0), (52)

for the value of the function and its derivative at the vertex α, along the arc αβ. The continuous
boundary conditions assume

(i) Continuity of the function at each vertex: all the components ϕαβ for all β neighbours of
α are equal. The value of the function at the vertex is denoted by ϕ(α).

(ii)
∑

β aαβϕ′
αβ = λαϕ(α) where the adjacency matrix in the sum constrains it to run over

the neighbouring vertices of α. Therefore the sum runs over all wires issuing from the
vertex. The real parameter λα allows describing several boundary conditions: λα = ∞
enforces the function to vanish, ϕ(α) = 0, and corresponds to the Dirichlet boundary
condition. λα = 0 corresponds to the Neumann boundary condition. We refer to the case

32 Note that this definition assumes that two vertices are connected by at most one bond and that a bond never forms a
loop. We emphasize that this does not imply any particular restriction on the topology of the graph: one can always
introduce a vertex on a bond, which separates the bond into two bonds, without modifying the properties of the graph.
The numbers of vertices and bonds can always be made arbitrary large and this is partly a matter of choice. The
case of closed bonds (forming a loop) or vertices connected by multiple bonds requires a simple generalization of the
formalism presented here (see for example [177] and appendix C of [3]). This generalization allows us in particular
to minimize B and V , which makes the computation sometimes easier.
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of a finite λα as ‘mixed boundary conditions’. In the problem of classical diffusion, the
Dirichlet condition describes the connection to a reservoir that absorbs particles, while
the Neumann condition ensures conservation of the probability current and describes an
internal vertex.

General boundary conditions. Thanks to the continuity hypothesis, the simple boundary
conditions we have just described allow us to introduce vertex variables ϕ(α) (this is convenient
since the number of vertices V is usually smaller than the number of arcs 2B). However
these are not the most general boundary conditions, and in general the different components
associated with the arcs issuing from a given vertex do not have a priori the same limit at the
vertex. The most general boundary conditions can be written as

Cϕ + Dϕ′ = 0 (53)

where ϕ and ϕ′ are the column vectors of dimension 2B collecting variables (51) and (52),
respectively. C and D are two square 2B×2B matrices. In the arc formulation, the information
on the topology of the graph is encoded in these two matrices. The self-adjointness of the
Laplace operator is ensured if these two matrices satisfy the following conditions [139]:
(i) CD† is self-adjoint. (ii) The 2B × 4B matrix (C,D) must have maximal rank. Note
that the choice of C and D is not unique. The introduction of boundary conditions without
continuity at the vertices has been motivated physically in [18, 52, 89, 90, 106, 192].

Scattering theory interpretation. We can give a more clear physical meaning to these conditions
in a scattering setting. Let us consider the equation −�ϕ(x) = Eϕ(x) for a positive energy
E = k2. We decompose the component on the bond as the superposition of an incoming
and an outgoing plane wave: ϕαβ(xαβ) = Iαβ e−ikxαβ + Oαβ eikxαβ . It is convenient to collect
the amplitudes in column vectors I and O. The vector I contains the incoming plane wave
amplitudes and the vector O the outgoing plane wave amplitudes. Both are related by a vertex
scattering matrix: O = QI . The self-adjointness of the Schrödinger operator is now ensured
by imposing the unitarity of the scattering matrix: Q†Q = 1. The relation between the two
formulations yields

Q = (
√

γD − C)−1(
√

γD + C). (54)

For the discussion below it is convenient to introduce the parameter γ related to the energy by
E = −γ = k2 + i0+ (the matrix Q is unitary for E > 0 only). An example of a matrix Q for
one vertex without continuity of the wavefunction was given in [52, 106, 192]. This particular
choice has become popular in mesoscopic physics (see also [209] where a more convenient
parametrization was provided).

Since we are considering here compact graphs, we are dealing only with discrete spectrum.
The study of noncompact graphs (with some wires of infinite length), which have continuous
spectra, requires a scattering theory approach, initiated by the work of Shapiro [191, 192] and
discussed in [2, 20, 25, 108, 139, 142, 143, 205, 206, 208, 209].

Magnetic fluxes. The Laplace operator arises in the context of diffusion equation but also in
quantum mechanics. In this last case a natural generalization is to introduce a magnetic field.
This is achieved by introducing a 1-form A(x) dx along the wires (the derivative must then be
replaced by a covariant derivative: dx → Dx = dx − iA(x)). We denote by θαβ = ∫ β

α
dxA(x)

the corresponding line integral along the arc αβ. In the context of classical diffusion, magnetic
fluxes and winding numbers are conjugated variables.
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5.3. Trace formulae and zeta functions

Trace formulae play an important role in spectral theory. A famous example is the Selberg
trace formula which may be viewed as an extension of the Poisson summation formula to
non-commutative groups [190]. An analogous formula in physics is the Gutzwiller trace
formula [123] that has extensively been used in the context of quantum chaos and mesoscopic
physics. Although one is exact and the other only a semiclassical approximation, both of
them express the partition function (or the density of states, whose Laplace transform gives
the partition function) as a sum over closed geodesics. They provide a connection between
quantum properties (spectrum) and classical properties (classical trajectories). Below we
discuss two examples of exact trace formulae that have been derived for graphs and their
relation to spectral determinants.

5.3.1. Roth’s trace formula. It expresses the trace of the heat kernel (partition function
Z(t) = Tr{et�}) as an infinite series of contributions of periodic orbits on the graph. This
remarkable formula, due to Roth [185, 186], applies to graphs with continuous boundary
conditions with λα = 0. It it easy to include magnetic fluxes additionally:

Z(t) = L
2
√

πt
+

V − B

2
+

1

2
√

πt

∑
C

l(C̃)α(C) e− l(C)2

4t
+iθ(C), (55)

where L is the ‘volume’ of the graph, i.e. the total length L = ∑
(αβ) lαβ . The sum runs over

all orbits C = (i1, i2, . . . , in) constructed in the graph. l(C) = li1 + · · ·+ lin is the total length of
the orbit, and θ(C) the magnetic flux enclosed by it. C̃ designates the primitive orbit associated
with a given orbit C. The weight α(C) depends on the connectivity of the vertices visited by
the orbit: α(C) = εi1i2εi2i3 · · · εini1 . The matrix ε couples the arcs of the graph33:

• if i ends at vertex α and j starts from it, we have εij = 2/mα , where mα is the connectivities
of the vertex;

• if moreover i and j = ī are the reversed arcs εiī = 2/mα − 1;
• otherwise εij = 0.

It is worth mentioning that the Roth trace formula has found recently some practical
applications to analyse magnetoconductance measurements on large square networks34 [94].

5.3.2. Ihara–Bass trace formula. Instead of considering metric graphs we now turn to graphs
viewed as purely combinatorial structures consisting of vertices connected by bonds of equal
lengths (lαβ = 1). All the information is therefore encoded in the adjacency matrix A. In this
setting, the Ihara ζ -function is defined as

ζ(u)−1 =
∏
C̃B

(1 − ul(C̃B)), (56)

where the infinite product extends over all primitive backtrackless orbits C̃B . The Ihara–Bass
trace formula relates this infinite product to the determinant of a finite size matrix [28, 197]:

ζ(u)−1 = (1 − u2)B−V det((1 − u2)1 − uA + u2Y ) (57)

33 Note that the parameter εij has a simple interpretation in the scattering formulation [209]: it is the probability
amplitude to be transmitted from arc i to arc j . The arc matrices ε and Q are related by εij = Qij̄ where j̄ denotes
the reversed arc.
34 More precisely, the expansion given below by equation (62) for the Laplace transform of the partition function is
relevant in this case.
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where 1 is the identity matrix, A is the adjacency matrix (Aαβ ≡ aαβ) and Y is the diagonal
matrix encoding all connectivities: Yαβ = δαβmα . This relation was derived by Ihara [129] for
regular graphs (all vertices with same connectivity) and later generalized to arbitrary graphs
by Bass [28]. The formalism that we have developed for metric graphs is flexible enough
to describe these combinatorial structures in the same setting. We will see below that the
ζ -function is in fact directly related to the spectral determinant. Moreover the Ihara–Bass
trace formula can be further generalized to include backtrackings.

5.4. Spectral determinant

In the physics literature spectral determinants arise in evaluating path integrals which are
quadratic in the fluctuation around a given background field. A well-known technique
for regularizing such quadratic path integrals is the ζ -function regularization. Given a
certain operator O whose eigenvalues En are known, one defines the following ζ -function:
ζ(s) = ∑

n E−s
n . This expression, which converges for s sufficiently large, can be analytically

extended to a meromorphic function regular at the origin. The corresponding regularized
determinant is then detO = exp(−ζ ′(0))(≡ ∏

n En formally). One can find a general
discussion on functional determinants in [96].

In the context of graphs another regularization of the determinant of the Laplace operator
has been used and has proved to be directly related to several physical quantities. If we
introduce the trace of the resolvent g(γ ) = ∑

n(γ + En)
−1, the spectral determinant is defined

as S(γ ) = exp
(∫ γ dγ ′g(γ ′)

)
(it can formally be written as35 S(γ ) = ∏

n(γ +En)). Moreover,
the spectral parameter γ has in some cases a physical meaning (see section 5.6).

5.4.1. Laplace operator � with continuous boundary conditions. Pascaud and Montambaux
have shown in [177, 178] that S(γ ) = det(γ − �) can be related to the determinant of a
V × V -matrix:

S(γ ) = γ
V −B

2

∏
(αβ)

sinh(
√

γ lαβ) det M, (58)

where the product runs over all bonds of the network. The V × V -matrix M is defined as

Mαβ = δαβ

(
λα√
γ

+
∑

µ

aαµ coth(
√

γ lαµ)

)
− aαβ

e−iθαβ

sinh(
√

γ lαβ)
, (59)

where the adjacency matrix constrains the sum to run over all vertices µ connected to α.
The matrix M encodes all information about the network: topology (matrix aαβ), lengths of
the wires (lαβ), magnetic fluxes (θαβ), boundary conditions (λα). Below, we give several
examples which show how S(γ ) is related to the characteristic function of various interesting
functionals of Brownian curves on a graph.

Expression (58) was originally derived in [178] by constructing Green’s function in the
graph and eventually integrating it:

∫
dx〈x| 1

γ−�
|x〉 = ∂

∂γ
ln S(γ ). A more direct derivation

using path integral was later obtained in [3].
The relation between the Roth trace formula and the result (58) was addressed in [3]. The

main difficulty to establish this connection is to go from vertex variables to the arc language
of equation (55). A first step is to relate the determinant of the vertex-matrix, equation (58),
to the determinant of an arc-matrix:

S(γ ) = γ
V −B

2 e
√

γL det(1 − QR), (60)

35 The limit γ → 0 of S(γ ) has been discussed in [3].



Topical Review R363

where R is the 2B × 2B matrix Rij = δij̄ e−√
γ li+iθi , where j̄ denotes the reversed arc. The

matrix Q was introduced above (equation (54)) and is related to ε by Qij = εij̄ . For the
continuous boundary conditions with λα = 0 it is given by Qii = 2/mα − 1,Qij = 2/mα if i
and j both issue from the vertex α. Qij = 0 in other cases. Equation (60) holds for the most
simple boundary conditions: continuous with λα = 0. The general case is discussed below.
Expanding the determinant by using ln det(1 − QR) = −∑∞

n=1
1
n

Tr{(QR)n}, we eventually
express the spectral determinant as an infinite product over the primitive orbits:

S(γ ) = γ
V −B

2 e
√

γL
∏
C̃

(1 − α(C̃) e−√
γ l(C̃)+iθ(C̃)). (61)

This shows that the spectral determinant is a zeta function (references on zeta functions on
graphs are [57, 197]). The last step to connect this formula to Roth’s trace formula is to note
that

∂

∂γ
ln S(γ ) = L

2
√

γ
+

V − B

2γ
+

1

2
√

γ

∑
C

l(C̃)α(C) e−√
γ l(C)+iθ(C), (62)

where the sum now runs over all orbits (if C is not primitive, C̃ designates the related
primitive orbit). Finally we perform an inverse Laplace transform of this expression,∫ ∞

0 dtZ(t) e−γ t = ∂
∂γ

ln S(γ ) and eventually recover equation (55). Examples of applications
are studied in [3].

5.4.2. Schrödinger operator −� + V (x) with general boundary conditions. Result (58) of
Pascaud and Montambaux has been generalized by one of us. In [72, 73] a similar formula
was obtained for the spectral determinant of the Schrödinger operator −� + V (x) (the Hill
operator), where V (x) is a scalar potential defined on the graph. In [74] the formula was further
extended to describe general boundary conditions as well. As an illustration we construct the
generating function of the number of closed orbits with a given number of backtrackings
[129, 226].

The starting point is to introduce two linearly independent solutions of the differential
equation

(−d2
x + Vαβ(x) + γ

)
f (x) = 0 on [0, lαβ]. We associate each solution with an arc.

Let us denote fαβ(xαβ) the function satisfying

fαβ(0) = 1 and fαβ(lαβ) = 0. (63)

Therefore a second solution of the differential equation is naturally denoted by fβα(xβα) =
fβα(lαβ − xαβ). The Wronskian of these two solutions, defined as Wαβ = fαβ(xαβ)

dfβα(xβα)

dxαβ
−

dfαβ (xαβ )

dxαβ
fβα(xβα), is constant along the bond: Wαβ = Wβα = −f ′

αβ(lαβ) = −f ′
βα(lαβ). If we

consider the case V (x) = 0, the solution is simply fαβ(xαβ) = sinh
√

γ (lαβ−xαβ )

sinh
√

γ lαβ
≡ sinh

√
γ xβα

sinh
√

γ lαβ
.

All the required information about the potential is contained in the 2B × 2B arc-matrix
N, defined as

Nαβ,µη = δαµδβηf
′
αβ(0) − δαηδβµf ′

αβ(lαβ). (64)

This matrix couples a given arc to itself and to its reversed arc, only. If we assume that the
matrices C and D are independent on the spectral parameter γ , it was shown in [74] that

S(γ ) = det(γ − � + V (x)) =
∏
(αβ)

1

Wαβ

det(C + DN) (65)

where the product runs over all bonds. Functional determinants on a segment of R with general
boundary conditions at the boundaries have been studied by McKane and Tarlie [164] using
the formalism developed by Forman [96].
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It is also interesting to encode the information on the potential V (x) in the matrix R
defined as36

R ≡ (
√

γ 1 + N)(
√

γ 1 − N)−1. (66)

Then

S(γ ) =
∏
(αβ)

1

Wαβ

1

det(1 + R)
det(C − √

γD) det(1 − QR) (67)

where the matrix Q = (
√

γD − C)−1(
√

γD + C) was defined above by equation (54). Let us
explain the structure of equation (67): the term det(1 + R)

∏
(αβ) Wαβ contains information on

the potential only37. The factor det(C − √
γD) contains only information on the topology of

the graph. The most interesting part is the last term det(1 − QR) combining both informations.
In particular this last part generates the infinite contributions of primitive orbits in (61).

5.4.3. Permutation–invariant boundary conditions. In the previous section the matrices
describing the graph are 2B × 2B arc matrices. A simplification can be brought by passing to
vertex variables. In the arc formulation, C and D define the topology of the graph: two arcs
coupled by C and/or D issue from the same vertex. Therefore it is possible to organize the
basis of arcs in such a way that the matrices C and D have similar block diagonal structures.
The matrices are made of V square blocks, each corresponding to a vertex. A given block, of
dimension mα × mα and denoted by Cα (and Dα), corresponds to the mα arcs issuing from
the vertex α. If we assume that the boundary conditions are invariant under any permutation
of the nearest neighbours of α, then it is possible to introduce vertex variables. In this case we
can write

Cα = cα1 + tαFα (68)

Dα = dα1 + wαFα (69)

where Fα is a matrix with all its elements equal to 1. The boundary conditions at the vertex
α are characterized by the four parameters cα, dα , tα and wα (note however that this choice is
not unique).

Now, let us show that, for boundary conditions given by equations (68) and (69) and
V (x) �= 0, the spectral determinant can be expressed in terms of the vertex V × V -matrix.

We proceed as before but, this time, we consider, for each bond, two other independent
solutions, χαβ(xαβ) and χβα(lαβ − xαβ) = χβα(xβα), of the equation

(−d2
xαβ

+ Vαβ(xαβ) + γ
)

χ(xαβ) = 0 that satisfy the following conditions:

cαχαβ(0) + dαχ ′
αβ(0) = 1 (70)

cβχαβ(lαβ) − dβχ ′
αβ(lαβ) = 0. (71)

We denote by �αβ the Wronskian of χαβ and χβα . Following the same steps as before, we get
the spectral determinant (up to a multiplicative constant):

S(γ ) =
∏
(αβ)

1

�αβ

det M (72)

36 Let us remark that, for the free case (V (x) ≡ 0), we recover the expression of the matrix R given above, coupling
the arc αβ to the reversed arc βα only: Rαβ,µη = δαηδβµ e−√

γ lαβ .
37 The matrix N encodes the information about the potential on the bonds through f ′

αβ(0) and f ′
αβ(lαβ). This

information can also be introduced through transmission tαβ and reflection rαβ amplitudes by the potential Vαβ(x).
This relation is developed in [209]. It is interesting to point out that det(1 + R)

∏
(αβ) Wαβ = 2Bγ B/2 ∏

(αβ) tαβ =
2Bγ B/2 ∏

(αβ) Rαβ,βα .
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where M is the V × V -matrix:

Mαβ = δαβ

(
1 +

∑
µ

aαµ[tαχαµ(0) + wαχ ′
αµ(0)]

)
+ aαβ [cαwα − tαdα] �αβ. (73)

Equation (65), expressing the determinant in terms of arc matrices, and equation (72),
expressing it in terms of vertex matrix, have been derived up to multiplicative constants
independent on γ . We can establish a precise relation by comparing their behaviour for
γ → ∞. We end up with∏

(αβ)

1

Wαβ

det(C + DN) =
∏
(αβ)

1

�αβ

det M. (74)

5.4.4. Free case (V (x) = 0). Applications: counting backtrackings. In this subsection we
show an application of generalized boundary conditions to count backtrackings (the figure 5
shows an orbit with one backtracking).

We now consider the case V (x) ≡ 0 still with permutation–invariant boundary conditions.
With the notations

ηα = cα +
√

γ dα

cα − √
γ dα

, ρα = µ−
α − µ+

α

1 + mαµ−
α

and µ±
α = tα ± √

γwα

cα ± √
γ dα

equations (74), (66) and (54) lead to

det(1 − QR) = 2−V
∏
α

(ραηα)
∏
(αβ)

(1 − ηαηβ e−2
√

γ lαβ ) det M (75)

and the V × V -matrix M takes the form

Mαβ = δαβ

(
2

ραηα

− mα

ηα

+
1

ηα

∑
µ

aαµ

1 + ηαηµ e−2
√

γ lαµ

1 − ηαηµ e−2
√

γ lαµ

)
− aαβ

2 e−√
γ lαβ

1 − ηαηβ e−2
√

γ lαβ
. (76)

Note that the expression (59) is recovered for ηα = 1 and ρα = 2/(mα + λα/
√

γ ).
For permutation-invariant boundary conditions, the matrices C, D and Q (equation (54))

are block-diagonal. The block Qα takes the simple form,

Qα = ηα(−1 + ραFα). (77)

The only non-vanishing elements of the matrix QR are

(QR)αβ,µα = (ραηα − ηαδβµ) e−√
γ lαµ . (78)

We call ραηα the transmission factor at vertex α and ραηα − ηα the reflection factor. By using
the same expansion as above we write

det(1 − QR) =
∏
C̃

(1 − µ(C̃) e−√
γ l(C̃)), (79)

where the product is taken over all primitive orbits C̃ whose lengths are denoted by l(C̃).
An orbit being a succession of arcs . . . , τα, αβ, . . . with, in α, a reflection (if τ = β) or a
transmission (if τ �= β), the weight µ(C̃), in equation (79), will be the product of all the
reflection—or transmission—factors along C̃.

Graphs with wires of equal lengths. We consider the case of equal lengths lαβ = l; then we
can choose γ = 1 without loss of generality and introduce the notation u ≡ e−l . It is clear
from equation (77) that a backtracking at vertex α brings a factor ηα into the weight µ(C̃). In
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order to count backtrackings one has to choose the boundary conditions ραηα = 1 and ηα = η.
Equation (75) takes the simple form,∏
C̃m

(1 − (1 − η)nR(C̃m)um) = (1 − η2u2)B−V det((1 − η2u2)1 + ηu2Y − uA) ≡ Z−1, (80)

where m is the number of arcs of the primitive orbit C̃m and nR(C̃m) is the number of
reflections (backtrackings) occurring along C̃m. Y is the V × V -matrix Yαβ = δαβmα and A is
the adjacency matrix.

Setting η = 1 implies nR(C̃m) = 0 on the left-hand side of equation (80): we recover
Ihara–Bass formula [28, 129, 197] where only primitive orbits without tails and backtrackings
are kept. (Ihara [129] established this formula for a regular graph; the proof for a general
graph is given in [28, 197] using a direct counting technique).

Now, let us consider closed random walks with a given number of backtrackings.
Equation (80) provides a non-trivial generalization of the Ihara–Bass formula (an

independent derivation is also given in [26]). As an application let us consider the problem of
enumerating m-steps random walks with p-backtracking steps [226]. Taking Z in (80), we get

u
d ln Z

du
=

∞∑
m=2

m∑
p=0

V∑
α=1

Np
m(α)(1 − η)pum (81)

where N
p
m(α) is the number of m-steps closed random walks on the graph starting at α, with

p backtrackings.

Example (the complete graph). For the complete graph38 KV , we get the results:

N0
2 (α) = 0

N0
3 (α) = (V − 1)(V − 2)

N0
4 (α) = (V − 1)(V − 2)(V − 3)

N0
5 (α) = (V − 1)(V − 2)(V − 3)(V − 4)

N0
6 (α) = (V − 1)(V − 2)(V 3 − 9V 2 + 29V − 32).

(82)

and also

N1
2 (α) = N1

3 (α) = N1
4 (α) = 0

N1
5 (α) = 5(V − 1)(V − 2)(V − 3)

N1
6 (α) = 6(V − 1)(V − 2)(V − 3)2.

(83)

Note that these expressions have been obtained when all vertices are characterized by the same
parameter η. Introducing different parameters ηα allows counting of the backtrackings at a
given vertex.

5.5. Quantum chaos on metric graphs

It has been recently realized that metric graphs are interesting models for quantum chaos. The
paper of Kottos and Smilansky [140] has stimulated several works on spectral statistics and
level correlations [24, 141, 201], and renewed the interest in the Roth trace formula [186].
Progress in the understanding of universality of spectral statistics for generic quantum graphs

38 The complete graph KV with V vertices is the V − 1-simplex: each vertex is connected to all other vertices (see
figure 6).
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Figure 6. The complete graph K5 (the 4-simplex): all vertices are connected to each other by
bonds of equal lengths.

has been achieved by Gnutzmann and Altland [110]. One of the input of this work is the
observation that the spectral average for a given graph with incommensurate bond lengths is
equivalent to an average over a certain ensemble of unitarity matrices. Star graphs [36, 136]
have provided simple examples of systems with intermediate level statistics similar to that
observed in Šeba billiards and a precise connection has been established in [35]. There is
however an interesting class of graphs which do not enter in this category [202]. Chaotic
scattering and transport properties in open graphs (with some infinitely long wires) have also
been studied in [25, 142, 143]. Since quantum chaos is not the central subject of our review,
this list of papers is not exhaustive: we refer the reader interested in this topic to the review
papers [141, 143, 202] and the PhD thesis [225].

5.6. Weak localization and Brownian motion on graphs

Our initial physical motivation for the study of the spectral determinant on graphs was based on
the observation that the weak localization correction to the conductivity is directly expressed
in terms of the spectral determinant. We see from equation (2) that

〈�σ 〉 = − 2e2

πVolume

∂

∂γ
ln S(γ ), (84)

where the spectral parameter is related to the phase coherence length γ = 1
/
L2

ϕ . Expressions
(84), (58) and (59), due to Pascaud and Montambaux [3, 177, 178], improve the approach
initiated by Douçot and Rammal [81, 82].

5.6.1. Nonlocality of the quantum transport in arbitrary networks. We must stress that
formula (84) corresponds to a uniform integration of the cooperon, defined as Pc(x, x) =
〈x| 1

γ−�
|x〉, on the graph 〈�σ 〉 ∝ − ∫

dxPc(x, x). This approach is limited to the case of
regular graphs, where all wires play the same role. In other terms, for a nonregular network,
the quantity (84) does not correspond to a quantity measured in a transport experiment. For
arbitrary networks, the cooperon must be integrated over the network with appropriate non-
trivial weights that depend on the topology of the whole network and the way it is connected
to external contacts. Such a generalization was provided in [210].

5.6.2. Windings in a loop connected to a network. As we have mentioned in section 2.2,
magnetoconductance oscillations due to a magnetic flux and winding properties are closely
related. For example, if we consider an isolated ring of perimeter L pierced by a magnetic flux
φ, the well-known behaviour of the harmonics,

〈�σn〉 =
∫ 2π

0

dθ

2π
〈�σ(θ)〉 e−inθ ∝ e−|n|L/Lϕ , (85)
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λ1

L

b
0

1

Figure 7. A diffusive ring attached to a long arm. The parameter λ1 describes the boundary
condition at vertex 1: λ1 = ∞ for the Dirichlet boundary and λ1 = 0 for the Neumann boundary
condition.

(a)

a

0

(b)

0

a a

Figure 8. A diffusive ring attached to (a) an infinite square lattice, (b) an infinite Bethe lattice of
connectivity z = 3. To ensure that the Bethe lattice is regular, it must be embedded in a constant
negative curvature surface.

is a direct consequence of the fact that the winding around the ring scales with time as nt ∝ t1/2

(normal diffusion). θ = 4πφ/φ0 is the reduced flux and γ = 1
/
L2

ϕ . This effect was predicted
by Al’tshuler, Aronov and Spivak (AAS) in [10] and observed in experiments on cylinder
films [11, 193].

Recently it has been noted that the fact that the ring is connected to arms, which is
necessary to perform a transport experiment, can strongly affect the harmonics. If we consider
a ring connected to Na long arms, in the limit Lϕ � L, the harmonics are still given by the
AAS behaviour (85), however when the perimeter is smaller than Lϕ , the harmonics behave

as 〈�σn〉 ∝ e−|n|
√

NaL/Lϕ . To clarify the origin of this behaviour, the winding of Brownian
trajectories around a ring connected to another network has been recently examined in [212].
This analysis is based on the fact that the winding number distribution can be expressed in
terms of the spectral determinant. Let us briefly describe this approach.

We consider a ring to which is attached an arbitrary network at vertex 0 (figures 7 and 8
give examples of such a situation). Our aim is to understand how the winding around the
ring is affected by the presence of the network. To answer this question we introduce the
probability to start from a point x on the graph and come back to it after a time t, conditioned
to wind n times around the loop:

Pn(x, t |x, 0) =
∫ x(t)=x

x(0)=x

Dx(τ) e− 1
4

∫ t

0 dτ ẋ(τ )2
δn,N [x(τ)] (86)

where N [x(τ)] is the winding number of the path x(τ) around the loop. For simplicity, we
consider the case where the initial point is the vertex 0. The computation of Pn(0, t |0, 0)

requires some local information (the eigenfunctions of the Laplace operator at point x = 0).
On the other hand the spectral determinant encodes a global information since it results from
a spatial integration of Green’s function of the Laplace operator over the network. However
we have shown in [212] that if we consider mixed boundary conditions at vertex 0 described
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by a parameter λ0 (see the definition of the boundary conditions given above), we can extract
the probability of interest39 as follows:∫ ∞

0
dt Pn(0, t |0, 0) e−γ t =

∫ 2π

0

dθ

2π
e−inθ d

dλ0
ln S(λ0)(γ )

∣∣∣∣
λ0=0

, (87)

where S(λ0)(γ ) is the spectral determinant for mixed boundary condition at vertex 0 and with
a magnetic flux θ piercing the ring. This formula allows us to express the probability as∫ ∞

0
dt Pn(0, t |0, 0) e−γ t = 1

2
√

γ

sinh
√

γL

sinh
√

γLeff(γ )
e−|n|√γLeff(γ ), (88)

where all the information about the nature of the network attached to the ring is contained in
the effective perimeter Leff(γ ), defined as

cosh
√

γLeff(γ ) = cosh
√

γL +
sinh

√
γL

2
(
M−1

net

)
00

. (89)

The matrix Mnet describes the network in the absence of the loop (it is given by equation (59);
for the network of figure 8(a), Mnet describes the infinite square network without the ring).
The matrix element

(
M−1

net

)
00 has a clear meaning: it is the Green function of the Laplace

operator in the network (without the loop) computed at the position where the ring is attached:√
γ
(
M−1

net

)
00 = 〈0| 1

γ−�
|0〉.

The effective perimeter Leff(γ ) probes the winding at time scale t ∼ 1/γ : precisely, the
winding number scales with time as nt ∼ √

t/Leff(1/t).
Two interesting examples are

• Ring attached to an infinite wire (figure 7). When a wire of length b with the Dirichlet
boundary at one end is attached to the ring, it is easy to see that equation (59) gives(
M−1

net

)
00 = tanh

√
γ b −→

b→∞
1. At large time t 	 L2, the effective perimeter behaves as

Leff � √
Lγ −1/4. This behaviour is related to a scaling of the winding number with time

nt ∝ t1/4. (90)

The full distribution for the winding number n is given in [212]. The exponent 1/4 that
characterizes anomalously slow winding around the loop originates from the fact that the
diffusive trajectory spends a long time in the infinite wire, which increases the effective
perimeter at such time scales. This problem is also related to the anomalous diffusion
along the skeleton of a comb, studied in [22, 222] by different methods. It is interesting to
use this picture. Let us consider a random walk along the sites of a line where the diffusive
particle is trapped during a time τ on each site. The trapping time is distributed according
to a broad distribution P1(τ ) ∝ τ−1−µ with 0 < µ < 1. It follows that the distance scales
with time as nt ∼ tµ/2 [43]. If we go back to the problem of diffusion along the skeleton
of a comb (or the winding in the ring connected to the long arm), the arm plays the role
of the trap. The distribution of the trapping time is given by the first return probability of
the one-dimensional diffusion: P1(τ ) ∝ τ−3/2 and we recover equation (90).

39 The fact that some ‘local’ information, such as Pn(0, t |0, 0), can be extracted from a more ‘global’ object, such as
the spectral determinant, by introducing the mixed boundary conditions with parameter λ0 has been also used in the
context of scattering theory in graphs in [206, 208]. The derivative in equation (87) can be understood as a functional
derivative since λ0 plays a role similar to the weight of a δ-potential at x0. The use of functional derivatives in
scattering theory for mesoscopic systems has been fruitfully used by Büttiker and co-workers (see [51] and references
therein).
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• Ring attached to a square network (figure 8(a)). When studying the winding around the
loop, it is important to know whether the Brownian motion inside the network attached
to the ring is recurrent or not. Let us consider the case where the network attached is
a d-dimensional hypercubic network. For d > 2 the Brownian motion is known to be
transient where as, for d = 2 it is neighbourhood recurrent (in d = 1 the Brownian motion
is pointwise recurrent). Therefore we expect the dimension 2 to play a special role. In the
large time limit, when t 	 L2 and t 	 a2 (a is the lattice spacing), we find an effective

length
√

γLeff �
√

2πL
a ln(4/

√
γ a)

, that corresponds to a scaling of the winding around the

loop

nt ∝ (ln t)1/2. (91)

This result can be obtained in the same way as for the ring connected to the arm. This
time the plane acts as a trap. The distribution of the trapping time is given by the
first return probability on a square lattice, which is known to behave at large times like
P1(τ ) ∝ 1/(τ ln2 τ) [27], from which we can recover equation (91).

5.6.3. Occupation time and local time distribution on a graph. Another set of problems
concern occupation times, i.e., time spent by a Brownian particle in a given region. An
example of such a problem is provided by the famous arc-sine law for 1d Brownian motion
that gives the distribution of the time spent by a Brownian motion (x(τ ), 0 � τ � t |x(0) = 0)

on the half line R
+. This result was derived long ago by P Lévy [155]. It has been extended by

Barlow, Pitman and Yor [23] for a particular graph (star graph with arms of infinite lengths):
instead of an infinite line, these authors consider n semi-infinite lines originating from the
same point and study the joint distribution of the times spent on each branch. More recently,
this problem has been reconsidered in the case of arbitrary graphs [75]. It may be stated as
follows: consider a Brownian motion x(τ) on a graph, starting from a point x0 at time 0 and
arriving at a point x1 at time t. Let Tαβ denotes the time spent on the wire (αβ). This functional
is defined as Tαβ[x(τ)] = ∫ t

0 dτθαβ(x(τ )) where the function θαβ(x) is 1 for x ∈ (αβ) and 0
otherwise. Our aim is to compute the Laplace transforms of the joint distribution

〈e− ∑
(αβ) ξαβTαβ 〉 =

∫
dx1F(x1, x0; t; {ξαβ}) (92)

with

F(x1, x0; t; {ξαβ}) =
∫ x(t)=x1

x(0)=x0

Dx(τ) e− 1
4

∫ t

0 dτ ẋ2−∑
(αβ) ξαβTαβ [x(τ)]. (93)

Definition (92) takes into account averaging over the final point x1. A conjugate parameter
ξαβ is introduced for each variable Tαβ , i.e. each bond. A closed expression of the Laplace
transform of the joint distribution (92) has been derived in [75]. The result is given as a
ratio of two determinants, an expression reminiscent of that of Leuridan [154], although the
connection is not completely clear.

Similar methods have been also applied in [60] to study the distribution of the local time
Tx0 [x(τ)] = ∫ t

0 dτδ(x(τ ) − x0).
A simplification occurs when the final point coincides with the initial point. Then it

is possible to relate the characteristic function to a single spectral determinant. We do not
develop the general theory here but instead consider an example close to that studied in the
previous subsection. Let us consider the graph in figure 7 and ask the following question:
for a Brownian motion starting from x0 at time 0 and coming back to it at time t, what is
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the distribution of the time Tarm[x(τ)] spent in the arm if in addition the Brownian motion is
constrained to turn n times around the ring? It is natural to introduce the following function:

Fn(x0, x0; t, ξ) =
∫ x(t)=x0

x(0)=x0

Dx(τ) exp

(
−

∫ t

0
dτ

(
1

4
ẋ2 + ξθarm(x)

))
δn,N [x(τ)] (94)

where N [x(τ)] is the winding number around the ring. This function is related to the Laplace
transform of the distribution of the functional Tarm[x(τ)]

〈e−ξTarm[x]〉Cn
= Fn(x0, x0; t, ξ)

Fn(x0, x0; t, 0)
, (95)

where 〈· · ·〉Cn
denotes averaging over curves of winding n. The denominator ensures

normalization. The Laplace transform of (94) is given by a relation similar to equation (87)∫ ∞

0
dt Fn(x0, x0; t, ξ) e−γ t =

∫ 2π

0

dθ

2π
e−inθ d

dλ0
ln S(λ0)(γ )

∣∣∣
λ0=0

(96)

where the appropriate spectral determinant is built as follows: (i) since the starting point is
fixed at 0, we introduce mixed boundary conditions at this point, with a parameter λ0 that
will be used to extract the ‘local information’. (ii) A magnetic flux θ is introduced (conjugate
to the winding number). (iii) The spectral parameter is shifted in the arm as γ → γ + ξ to
introduce the variable ξ conjugate to the time Tarm.

We choose the vertex 0 as initial condition and impose the Dirichlet boundary condition
(which is achieved by setting λ1 = ∞) at the end of the arm of length b. The spectral
determinant is found straightforwardly (for an efficient calculation of S(γ ) for a graph with
loops, see [177] or appendix C of [3]):

S(λ0)(γ ) = sinh
√

γL sinh
√

γ + ξb√
γ
√

γ + ξ

[
2
√

γ
cosh

√
γL − cos θ

sinh
√

γL
+ λ0 +

√
γ + ξ coth

√
γ + ξb

]
.

(97)

The terms in the brackets correspond to the matrix40 M (since λ1 = ∞ we can consider only
the element M00). The first term is the contribution of the loop, the second comes from the
boundary condition and the last one comes from the arm. It immediately follows that∫ ∞

0
dt Fn(0, 0; t, ξ) e−γ t = 1

2
√

γ

sinh
√

γL

sinh
√

γLeff
e−|n|√γLeff (98)

with

cosh
√

γLeff = cosh
√

γL + 1
2

√
1 + ξ/γ sinh

√
γL coth

√
γ + ξb. (99)

Let us consider an infinitely long arm b → ∞. If we are interested on time scales
t 	 τL, where τL = L2 is the Thouless time over which the ring is explored,
equation (99) gives

√
γLeff � (γ + ξ)1/4

√
L, therefore from equation (98) we see that

Fn(0, 0; t, ξ) � e−ξ tFn(0, 0; t, 0). The inverse Laplace transform of equation (95) leads to
〈δ(T − Tarm[x])〉Cn

� δ(T − t), which means that the Brownian motion spends almost all the
time in the arm (this simple result confirms the picture presented to explain the scaling of the
winding around the ring of the form nt ∝ t1/4).

40 The introduction of the conjugate parameters {ξαβ } corresponds to shift the spectral parameter γ on each wire as
γ → γ + ξαβ . The matrix to be generalized is not M, given by equation (59), but M = √

γM .
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6. Planar Brownian motion and charged particle in a random magnetic field

A model of random magnetic field describing a charged particle moving in a plane and
subjected to the random magnetic field B(�r) = �∇ × �A(�r) due to an ensemble of magnetic
Aharonov–Bohm vortices is described by the following Hamiltonian [77, 100]:

H = 1

2
( �p − �A(�r))2 +

1

2
B(�r) = 1

2

(
�p − α

∑
i

�uz × (�r − �ri)

(�r − �ri)2

)2

+ πα
∑

i

δ(�r − �ri) (100)

where 0 � α < 1. We have set h̄ = e = m = 1. α is the magnetic flux per vortex, in unit of
the quantum flux φ0 = h/e: α = φ/φ0 = φ/(2π). The model is periodic in α with a period 1.
�uz is the unit vector perpendicular to the plane. �ri are the positions of the vortices in the plane:
they are uncorrelated random variables (Poisson distribution). The δ interactions (coupling to
the magnetic field) are necessary in order to define properly the model [33, 63, 131, 163, 175].

By comparison with scalar impurities discussed in the introduction, the magnetic nature of
the scatterers gives rise to rather different properties41: it was shown in [77] that the spectrum
is reminiscent of a Landau spectrum with Landau levels broadened by disorder, in the limit of
vanishing magnetic flux α → 0 (see below). This analysis was performed using perturbative
arguments supported by numerical simulations. The latter use a relation between the average
DoS of this particular model and some winding properties of the Brownian motion.

Let Z(t) denotes the partition function for a given distribution of vortices and Z0(t) the
partition function without fluxes. The ratio of partition functions can be written as a ratio of
two path integrals

Z(t)

Z0(t)
=

∫
d�a ∫ �r(t)=�a

�r(0)=�a D�r(τ ) e
∫ t

0 (− 1
2 �̇r2+i �A·�̇r)dτ∫

d�a ∫ �r(t)=�a
�r(0)=�a D�r(τ ) e− ∫ t

0
1
2 �̇r2dτ

= 〈ei
∮
C

�A·d�r〉C, (101)

where Z0(t) = V/(2πt) is the free partition function (V is the (infinite) area of the plane) and
〈· · ·〉C stands for averaging over all closed Brownian curves of the plane.

In order to average Z(t) over the Poissonian distribution of vortices, let us consider, for a
while, our problem on a square lattice with lattice spacing a. Let Ni be the number of vortices
in square i. The magnetic flux through any closed random walk C on this lattice can be written
as ∮

C
�A · d�r =

∑
i

2παNini (102)

where ni is the number of times the square i has been wound around by C.
Averaging Z(t) with the Poisson distribution (µ being the mean density of vortices)

P(Ni) = (µa2)Ni

Ni!
e−µa2

(103)

gives

〈Z(t)〉{�ri } = Z0(t)〈ei
∮
C

�A·d�r〉C,{�ri } = Z0(t)

〈
exp

(
µ

∑
n

Sn(e
2iπαn − 1)

)〉
C

(104)

where 〈· · ·〉{�ri } denotes averaging over the positions {�ri} of the vortices.

41 For scalar impurities, the presence of a magnetic field also strongly affects the spectral properties. The case of a
Gaussian disorder projected in the lowest Landau level (LLL) of a strong magnetic field was studied in [220]. Other
disordered potentials were considered later. In particular it was shown in [46] that for a weak density of impurities,
the spectrum can display power law singularities. A physical interpretation of such power law singularities has been
discussed by Furtlehner in [100, 101]. The relation between the model of scalar impurities projected in the LLL of
a strong magnetic field and the model of magnetic vortices was discussed in [78, 100]. Finally we mention a recent
work on Lifshitz tails in the presence of a magnetic field [153].
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Figure 9. A closed curve with its n-winding sectors. The label n of a sector is the winding number
of any point inside this sector.

The quantity Sn denotes the area of the locus of points around which the curve C has
wound n times. This result was derived for a random walk on a lattice but is also obviously
valid off lattice as well, for Brownian curves. The winding sectors of a closed curve are
displayed in figure 9.

The random variable Sn scales like t. In particular, we know [62, 118] its expectation
〈Sn〉 = t

2πn2 . Moreover, it has been shown in [223] that the variable n2Sn becomes more
and more peaked when n grows: P(n2Sn = X) −→

n→∞δ
(
X − t

2π

)
(the average area of the

n = 0-sector has recently been studied in [104]).
Thus, extracting t, equation (104) is rewritten as

〈Z(t)〉{�ri } = Z0(t)

∫
dS dA P(S,A) e−µt(S+iA) ≡ Z0(t)〈e−µt(S+iA)〉C, (105)

where P(S,A) is the joint distribution of the rescaled (t independent) variables S and A defined
as

S = 2

t

∑
n

Sn sin2(παn) (106)

A = 1

t

∑
n

Sn sin(2παn). (107)

The averages of these two variables are given by

〈S〉 = πα(1 − α) (108)

〈A〉 = 0. (109)

With equation (105), we observe that 1
V

〈Z(t)〉{�ri } has the scaling form F(µt)/t . Thus, its
inverse Laplace transform, the average density of states per unit area, is a function of only
E/µ and α. Moreover, it is easy to realize that 〈Z(t)〉{�ri } is even in α (each Brownian curve
in {C} comes with its time reversed) and periodic in α with period 1. Thus, one can restrict to
0 � α � 1

2 . Let us focus on the two limiting cases α → 0 and α = 1/2.

• Limit α → 0: Landau spectrum.
When α → 0, a careful analysis shows that

〈Z(t)〉{�ri } � Z〈B〉 e− 1
2 〈B〉t (110)

where Z〈B〉 = Z0(t)
〈B〉t/2

sinh(〈B〉t/2)
is the partition function of a charged particle in a uniform

magnetic field 〈B〉 = 2πµα (we recall that the impurity i carries a magnetic field
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Figure 10. The average density of states at α = 0.5 (the free density of states is constant
ρ0 = 1/(2π)). Circles are simulation results. The full line is the fit discussed in the text.

2παδ(�r − �ri)). The system of random vortices is, thus, equivalent to the uniform
average magnetic field, albeit with an additional positive shift in the Landau spectrum:
the inverse Laplace transform of the partition function (110) gives the Landau spectrum
made of equally spaced infinitely degenerated levels. This corresponds to the oscillating
behaviour shown in figure 11. The origin of the shift can be traced back to the presence
of the repulsive δ interactions that have been added to the Hamiltonian to define properly
the model.

• Half quantum flux vortices (α = 1/2)—the spectral singularity at E = 0.
In this case variable (107) vanishes, A ≡ 0, implying that 〈Z(t)〉{�ri } = Z0(t)〈exp(−µtS)〉C
where now

S = 2

t

∑
n odd

Sn. (111)

Performing the inverse Laplace transform, we get the average density of states per unit
area:

〈ρ(E)〉 = ρ0(E)

∫ E/µ

0
dSP (S) (112)

where ρ0(E) = 1
2π

is the free density of states per unit area and P(S) is the probability
distribution of S.

We may use this result to determine the nature of the singularity in the average DoS.
As displayed in figure 10 (where we have taken µ = 1), 〈ρ(E)〉 increases monotonically
from 0 to ρ0(E) with a depletion of states at the bottom of the spectrum. Circles are the
result of numerical simulations (on a 2D square lattice, we have generated 10 000 closed
random walks of 100 000 steps each). The full line is a low-energy fit of the quantity
〈ρ(E)〉/ρ0 by the function

ρfit(E)

ρ0
= a e−b(µ/E)2

(113)

with a = 2.8 and b = 1.4 (see figure 10). It is worth stressing that this behaviour is quite
different from that expected for a disorder due to a scalar potential. The famous Lifshitz
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Figure 11. Average density of states of the Hamiltonian (100) for different values of the flux per
tube φ = αφ0. The average magnetic field reads 〈B〉 = 2πµα. We recall that the corresponding
Landau spectrum is given by En = 〈B〉(n + 1), for n � 0 (from [77]).

argument, applicable to the low-energy DoS for a low concentration of scalar impurity,
leads instead to42 a behaviour

ρLif(E) ∼ e−c2µ/E, (114)

where c2 is a constant. Our choice for this fit is motivated by a recent numerical
work [184] concerning the area A of the outer boundary of planar random loops. In
this work, the author suggests that the limit distribution of A is the Airy distribution
implying, for small A values, a behaviour of the type exp(−const/A2)/A2. Remarking
that A = ∑

n even Sn +
∑

n odd Sn, it is natural to expect for the distribution of the random
variable S, equation (111), a behaviour at small S that is roughly given by exp(−const/S2).
Thus, we deduce the form ρfit(E) for the low-energy fit of 〈ρ(E)〉.

• Transition between α = 0.5 and α → 0.
Finally, when α grows from 0 to 0.5, the oscillations in the spectrum must disappear at
some critical value αc (see figure 11). Numerical simulations, specific heat considerations
and, also, diagrammatic expansions [77] give αc ∼ 0.3.

42 The Lifshitz argument applies to the DoS for the random Hamiltonian H = −� +
∑

i u(�r − �ri ) in dimension
d, where u(�r) is a sharply peaked scalar potential. For a low density of impurities µ, the DoS behaves as
ρLif(E) ∼ exp(−cdµ/Ed/2) at low energy.
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7. Conclusion

A non-experienced reader may have the feeling that the two topics which have been covered in
this review, namely one-dimensional disordered systems and quantum graphs, are essentially
disjoint. In fact there are many interesting links between these two topics, both at a
methodological and a conceptual level. The use of metric graphs for modelling quantum
phenomena observed in disordered metals goes back to the pioneering work of Shapiro
[191] and Chalker and Coddington [56]. These systems have been used to study quantum
localization and more recently as a model system for spectral statistics (for a recent review,
see [202]). Another set of similar questions is provided by the study of scattering properties
of chaotic graphs [143] and disordered systems [103] (see also section 3.2 and [174] for recent
developments). We have also seen that apart from its interest to study the spectral properties
of metric graphs, the spectral determinant also allows studying several properties of networks
of quasi-one-dimensional weakly disordered wires [3, 177, 178].

As a conclusion we would like to mention several open problems.

• A study of spectral statistics in the case of graphs with a random Schrödinger operator
(there is still a factorized structure but the matrix R is now given by equation (66)).

• A probabilistic understanding of the star graphs using the tools of excursion theory
developed by Barlow et al [23] in the context of the Brownian spider. A first step
would be to recover those probabilistic results (the joint law of the occupation time inside
the branches) by a spectral approach. It is however not excluded that the probabilistic
approach could provide a key to a deeper understanding of those quantum systems. In
the context of classical systems such probabilistic approaches have been very useful,
e.g. recent studies of the stochastic Loewner equation have made enormous progress in
understanding the statistical physics of a class of two-dimensional systems. This calls for
new probabilistic techniques for quantum systems as well.

• Several functionals of Brownian motion (13), (16) appear when studying the important
question of dephasing due to electron–electron interaction in networks of quasi-one-
dimensional weakly disordered wires. The fact that such simple functionals appear relies
on the translation invariance of the two particular problems studied (an infinite wire
[9] and an isolated ring [212]). For a network with arbitrary topology, the relevant
functional of the Brownian bridge x(τ) is given by

∫ t

0 dτ W(x(τ), x(t − τ)) where
W(x, x ′) = 1

2 [Pd(x, x) + Pd(x
′, x ′)] − Pd(x, x ′) with −�Pd(x, x ′) = δ(x − x ′). It

now involves a nonlocal functional in time which is difficult to handle. Progress in
this direction would allow clarification of the interplay between the electron–electron
interaction and the geometrical effect and help in analysing recent experimental results
[29, 94].

• The question of extreme value spectral statistics was addressed in the framework of
random matrix theory [214] and these studies have found several applications in the
context of out-of-equilibrium statistical physics (see the review [215]). However this
question was first addressed in the context of one-dimensional disordered systems [117].
The study of supersymmetric random Hamiltonian, for which the bottom of the spectrum
plays a special role, has emphasized the interest in extreme value spectral statistics [204]
(in particular it indicates level correlations). It would be interesting to extend such studies
to other models and find some physical situations where these results would be applicable.

• A beautiful heuristic argument was provided by Lifshitz to explain the spectral singularity
for Hamiltonians with a weak concentration of localized scalar impurities (see for example
the book [157]). Other mechanisms should be invoked to explain the nature of the quantum
states responsible for the low-energy power law behaviour in the case of a uniform strong
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magnetic field with δ-impurities [100, 101]. For the model of randomly distributed
magnetic fluxes, the numerical simulations for α = 1/2 have suggested the new type
of singular behaviour (113). It would be interesting to provide heuristic arguments to
understand more deeply the origin of this singularity.
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[94] Ferrier M, Angers L, Rowe A C H, Guéron S, Bouchiat H, Texier C, Montambaux G and Mailly D 2004

Direct measurement of the phase coherence length in axs GaAs/GaAlAs square network Phys. Rev. Lett.
93 246804

[95] Flajeolet P and Louchard G 2001 Analytic variations on the Airy distribution Algorithmica 31 361
[96] Forman R 1987 Functional determinants and geometry Invent. Math. 88 447
[97] Friedel J 1952 The distribution of electrons round impurities in monovalent metals Phil. Mag. 43 153
[98] Friedel J 1958 Metallic alloys Nuovo Cimento Suppl. 7 287
[99] Frisch H L and Lloyd S P 1960 Electron levels in a one-dimensional random lattice Phys. Rev. 120 1175

[100] Furtlehner C 1997 Étude du spectre de Landau pour un champ magnétique aléatoire en dimension 2
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[114] Gopar V A, Mello P A and Büttiker M 1996 Mesoscopic capacitors: a statistical analysis Phys. Rev. Lett. 77

3005
[115] Gor’kov L P, Dorokhov O N and Prigara F V 1983 Structure of wavefunctions an ac conductivity id disordered

one-dimensional conductors Sov. Phys.—JETP 58 852
[116] Gor’kov L P, Larkin A I and Khmel’nitzkiı̆ D E 1979 Particle conductivity in a two-dimensional random

potential JETP Lett. 30 228
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[178] Pascaud M and Montambaux G 1999 Persistent currents on networks Phys. Rev. Lett. 82 4512
[179] Perman M and Wellner J A 1996 On the distribution of Brownian areas Ann. Appl. Probab. 6 1091
[180] Pierre F, Gougam A B, Anthore A, Pothier H, Esteve D and Birge N O 2003 Dephasing of electrons in

mesoscopic metal wires Phys. Rev. B 68 085413
[181] Pitman J and Yor M 1986 Asymptotic laws of planar Brownian motion Ann. Probab. 14 733
[182] Rammer J and Shelankov A L 1987 Weak localization in inhomogeneous magnetic fields Phys. Rev. B 36 3135
[183] Rice S O 1982 The integral of the absolute value of the pinned Wiener process—calculation of its probability

density by numerical integration Ann. Probab. 10 240
[184] Richard C 2003 Area distribution of the planar random loop boundary J. Phys. A: Math. Gen. 37 4493
[185] Roth J-P 1983 Le spectre du Laplacien sur un graphe Colloque de Théorie du Potentiel—Jacques Deny
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[206] Texier C and Büttiker M 2003 Local Friedel sum rule in graphs Phys. Rev. B 67 245410
[207] Texier C and Comtet A 1999 Universality of the Wigner time delay distribution for one-dimensional random

potentials Phys. Rev. Lett. 82 4220–3
[208] Texier C and Degiovanni P 2003 Charge and current distribution in graphs J. Phys. A: Math. Gen. 36 12425–52
[209] Texier C and Montambaux G 2001 Scattering theory on graphs J. Phys. A: Math. Gen. 34 10307–26
[210] Texier C and Montambaux G 2004 Weak localization in multiterminal networks of diffusive wires Phys. Rev.

Lett. 92 186801
[211] Texier C and Montambaux G 2005 Dephasing due to electron–electron interaction in a diffusive ring,

unpublished (Preprint cond-mat/0505199) (Phys. Rev. B, at press)
[212] Texier C and Montambaux G 2005 Quantum oscillations in mesoscopic rings and anomalous diffusion J. Phys.

A: Math. Gen. 38 3455–71
[213] Thornton T J, Pepper M, Ahmed H, Andrews D and Davies G J 1986 One-dimensional conduction in the 2D

electron gas of a GaAs–AlGaAs heterojunction Phys. Rev. Lett. 56 1198
[214] Tracy C A and Widom H 1993 Level-spacing distribution and the Airy kernel Phys. Lett. B 305 115
[215] Tracy C A and Widom H 2002 Distribution functions for largest eigenvalues and their applications Proc. ICM

(Beijing) vol 1, p 587
[216] Verbaarschot J 1994 The spectrum of the Dirac operator near zero virtuality for Nc = 2 and chiral random

matrix theory Nucl. Phys. B [FS] 426 559
[217] Verwaat W 1979 On a stochastic difference equation and a representation of non negative infinitely divisible

random variables Adv. Appl. Probab. 111 750
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